Machine Learning for Financial Engineering:
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Singapore
World Scientific
2012
|
Schriftenreihe: | Advances in computer science and engineering
|
Schlagworte: | |
Online-Zugang: | Volltext |
Beschreibung: | 5.4. Universally Consistent Predictions: Unbounded Y. Preface; Contents; 1. On the History of the Growth-Optimal Portfolio M.M. Christensen; 1.1. Introduction and Historical Overview; 1.2. Theoretical Studies of the GOP; 1.2.1. Discrete Time; 1.2.2. Continuous-Time; 1.3. The GOP as an Investment Strategy; 1.3.1. Is the GOP Better? -- The Samuelson Controversy; 1.3.2. Capital Growth and the Mean-Variance Approach; 1.3.2.1. Discrete time; 1.3.2.2. Continuous time; 1.3.3. How Long Does it Take for the GOP to Outperform other Portfolios?; 1.4. The GOP and the Pricing of Financial Assets and Derivatives; 1.4.1. Incomplete Markets 1.4.1.1. Utility-Based Pricing1.4.1.2. The Minimal Martingale Measure; 1.4.1.3. Good-Deal Bounds; 1.4.2. A World Without a Risk-Neutral Measure; 1.5. Empirical Studies of the GOP; 1.5.1. Composition of the GOP; 1.5.1.1. Discrete-Time Models; 1.5.1.2. Continuous Time Models; 1.6. Conclusion; References; 2. Empirical Log-Optimal Portfolio Selections: A Survey L. Gyorfi, Gy. Ottucsak and A. Urban; 2.1. Introduction; 2.2. Constantly-Rebalanced Portfolio Selection; 2.2.1. Log-Optimal Portfolio for Memoryless Market Process; 2.2.2. Examples for the Constantly-Rebalanced Portfolio 2.2.3. Semi-Log-Optimal Portfolio2.3. Time-Varying Portfolio Selection; 2.3.1. Log-Optimal Portfolio for Stationary Market Process; 2.3.2. Empirical Portfolio Selection; 2.3.3. Regression Function Estimation; 2.3.4. Histogram-Based Strategy; 2.3.5. Kernel-Based Strategy; 2.3.6. Nearest-Neighbor-Based Strategy; 2.3.7. Numerical Results on Empirical Portfolio Selection; References; 3. Log-Optimal Portfolio-Selection Strategies with Proportional Transaction Costs L. Gyorfi and H. Walk; 3.1. Introduction; 3.2. Mathematical Setup: Investment with Proportional Transaction Cost 3.3. Experiments on Heuristic Algorithms3.4. Growth-Optimal Portfolio Selection Algorithms; 3.5. Portfolio Selection with Consumption; 3.6. Proofs; References; 4. Growth-Optimal Portfolio Selection with Short Selling and Leverage M. Horvath and A. Urban; 4.1. Introduction; 4.2. Non-Leveraged, Long-Only Investment; 4.3. Short Selling; 4.3.1. No-Ruin Constraints; 4.3.2. Optimality Condition for Short Selling with Cash Account; 4.4. Long-Only Leveraged Investment; 4.4.1. No-Ruin Condition; 4.4.2. Kuhn-Tucker Characterization; 4.5. Short Selling and Leverage; 4.6. Experiments; References 5. Nonparametric Sequential Prediction of Stationary Time Series L. Gyorfi and Gy. Ottucsak5.1. Introduction; 5.2. Nonparametric Regression Estimation; 5.2.1. The Regression Problem; 5.2.2. Regression Function Estimation and L2 Error; 5.2.3. Partitioning Estimate; 5.2.4. Kernel Estimate; 5.2.5. Nearest-Neighbor Estimate; 5.2.6. Empirical Error Minimization; 5.3. Universally Consistent Predictions: Bounded Y; 5.3.1. Partition-Based Prediction Strategies; 5.3.2. Kernel-Based Prediction Strategies; 5.3.3. Nearest-Neighbor-Based Prediction Strategy; 5.3.4. Generalized Linear Estimates This volume investigates algorithmic methods based on machine learning in order to design sequential investment strategies for financial markets. Such sequential investment strategies use information collected from the market's past and determine, at the beginning of a trading period, a portfolio; that is, a way to invest the currently available capital among the assets that are available for purchase or investment. The aim is to produce a self-contained text intended for a wide audience, including researchers and graduate students in computer science, finance, statistics, mathematics, and eng |
Beschreibung: | 1 Online-Ressource (261 pages) |
ISBN: | 9781848168145 1848168144 9781848168138 1848168136 |
Internformat
MARC
LEADER | 00000nmm a2200000zc 4500 | ||
---|---|---|---|
001 | BV042961103 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 151030s2012 |||| o||u| ||||||eng d | ||
020 | |a 9781848168145 |c electronic bk. |9 978-1-84816-814-5 | ||
020 | |a 1848168144 |c electronic bk. |9 1-84816-814-4 | ||
020 | |a 9781848168138 |9 978-1-84816-813-8 | ||
020 | |a 1848168136 |9 1-84816-813-6 | ||
035 | |a (OCoLC)794328402 | ||
035 | |a (DE-599)BVBBV042961103 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-1046 |a DE-1047 | ||
082 | 0 | |a 006.31 | |
100 | 1 | |a Gyorfi, Laszlo |e Verfasser |4 aut | |
245 | 1 | 0 | |a Machine Learning for Financial Engineering |
264 | 1 | |a Singapore |b World Scientific |c 2012 | |
300 | |a 1 Online-Ressource (261 pages) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a Advances in computer science and engineering | |
500 | |a 5.4. Universally Consistent Predictions: Unbounded Y. | ||
500 | |a Preface; Contents; 1. On the History of the Growth-Optimal Portfolio M.M. Christensen; 1.1. Introduction and Historical Overview; 1.2. Theoretical Studies of the GOP; 1.2.1. Discrete Time; 1.2.2. Continuous-Time; 1.3. The GOP as an Investment Strategy; 1.3.1. Is the GOP Better? -- The Samuelson Controversy; 1.3.2. Capital Growth and the Mean-Variance Approach; 1.3.2.1. Discrete time; 1.3.2.2. Continuous time; 1.3.3. How Long Does it Take for the GOP to Outperform other Portfolios?; 1.4. The GOP and the Pricing of Financial Assets and Derivatives; 1.4.1. Incomplete Markets | ||
500 | |a 1.4.1.1. Utility-Based Pricing1.4.1.2. The Minimal Martingale Measure; 1.4.1.3. Good-Deal Bounds; 1.4.2. A World Without a Risk-Neutral Measure; 1.5. Empirical Studies of the GOP; 1.5.1. Composition of the GOP; 1.5.1.1. Discrete-Time Models; 1.5.1.2. Continuous Time Models; 1.6. Conclusion; References; 2. Empirical Log-Optimal Portfolio Selections: A Survey L. Gyorfi, Gy. Ottucsak and A. Urban; 2.1. Introduction; 2.2. Constantly-Rebalanced Portfolio Selection; 2.2.1. Log-Optimal Portfolio for Memoryless Market Process; 2.2.2. Examples for the Constantly-Rebalanced Portfolio | ||
500 | |a 2.2.3. Semi-Log-Optimal Portfolio2.3. Time-Varying Portfolio Selection; 2.3.1. Log-Optimal Portfolio for Stationary Market Process; 2.3.2. Empirical Portfolio Selection; 2.3.3. Regression Function Estimation; 2.3.4. Histogram-Based Strategy; 2.3.5. Kernel-Based Strategy; 2.3.6. Nearest-Neighbor-Based Strategy; 2.3.7. Numerical Results on Empirical Portfolio Selection; References; 3. Log-Optimal Portfolio-Selection Strategies with Proportional Transaction Costs L. Gyorfi and H. Walk; 3.1. Introduction; 3.2. Mathematical Setup: Investment with Proportional Transaction Cost | ||
500 | |a 3.3. Experiments on Heuristic Algorithms3.4. Growth-Optimal Portfolio Selection Algorithms; 3.5. Portfolio Selection with Consumption; 3.6. Proofs; References; 4. Growth-Optimal Portfolio Selection with Short Selling and Leverage M. Horvath and A. Urban; 4.1. Introduction; 4.2. Non-Leveraged, Long-Only Investment; 4.3. Short Selling; 4.3.1. No-Ruin Constraints; 4.3.2. Optimality Condition for Short Selling with Cash Account; 4.4. Long-Only Leveraged Investment; 4.4.1. No-Ruin Condition; 4.4.2. Kuhn-Tucker Characterization; 4.5. Short Selling and Leverage; 4.6. Experiments; References | ||
500 | |a 5. Nonparametric Sequential Prediction of Stationary Time Series L. Gyorfi and Gy. Ottucsak5.1. Introduction; 5.2. Nonparametric Regression Estimation; 5.2.1. The Regression Problem; 5.2.2. Regression Function Estimation and L2 Error; 5.2.3. Partitioning Estimate; 5.2.4. Kernel Estimate; 5.2.5. Nearest-Neighbor Estimate; 5.2.6. Empirical Error Minimization; 5.3. Universally Consistent Predictions: Bounded Y; 5.3.1. Partition-Based Prediction Strategies; 5.3.2. Kernel-Based Prediction Strategies; 5.3.3. Nearest-Neighbor-Based Prediction Strategy; 5.3.4. Generalized Linear Estimates | ||
500 | |a This volume investigates algorithmic methods based on machine learning in order to design sequential investment strategies for financial markets. Such sequential investment strategies use information collected from the market's past and determine, at the beginning of a trading period, a portfolio; that is, a way to invest the currently available capital among the assets that are available for purchase or investment. The aim is to produce a self-contained text intended for a wide audience, including researchers and graduate students in computer science, finance, statistics, mathematics, and eng | ||
650 | 4 | |a Machine learning / Industrial applications | |
650 | 4 | |a Science | |
650 | 4 | |a Computer science | |
650 | 7 | |a COMPUTERS / Enterprise Applications / Business Intelligence Tools |2 bisacsh | |
650 | 7 | |a COMPUTERS / Intelligence (AI) & Semantics |2 bisacsh | |
650 | 4 | |a Datenverarbeitung | |
650 | 4 | |a Informatik | |
650 | 4 | |a Naturwissenschaft | |
650 | 4 | |a Financial engineering |x Data processing | |
650 | 4 | |a Machine learning | |
650 | 4 | |a Investments |x Data processing | |
650 | 0 | 7 | |a Financial Engineering |0 (DE-588)4208404-0 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Maschinelles Lernen |0 (DE-588)4193754-5 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Financial Engineering |0 (DE-588)4208404-0 |D s |
689 | 0 | 1 | |a Maschinelles Lernen |0 (DE-588)4193754-5 |D s |
689 | 0 | |5 DE-604 | |
700 | 1 | |a Ottucsak, Gyorgy |e Sonstige |4 oth | |
700 | 1 | |a Walk, Harro |e Sonstige |4 oth | |
856 | 4 | 0 | |u http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=457208 |x Aggregator |3 Volltext |
912 | |a ZDB-4-EBA |a ZDB-4-EBU | ||
940 | 1 | |q FAW_PDA_EBA | |
940 | 1 | |q FLA_PDA_EBU | |
999 | |a oai:aleph.bib-bvb.de:BVB01-028386971 |
Datensatz im Suchindex
_version_ | 1804175282492407808 |
---|---|
any_adam_object | |
author | Gyorfi, Laszlo |
author_facet | Gyorfi, Laszlo |
author_role | aut |
author_sort | Gyorfi, Laszlo |
author_variant | l g lg |
building | Verbundindex |
bvnumber | BV042961103 |
collection | ZDB-4-EBA ZDB-4-EBU |
ctrlnum | (OCoLC)794328402 (DE-599)BVBBV042961103 |
dewey-full | 006.31 |
dewey-hundreds | 000 - Computer science, information, general works |
dewey-ones | 006 - Special computer methods |
dewey-raw | 006.31 |
dewey-search | 006.31 |
dewey-sort | 16.31 |
dewey-tens | 000 - Computer science, information, general works |
discipline | Informatik |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>05763nmm a2200661zc 4500</leader><controlfield tag="001">BV042961103</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">151030s2012 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781848168145</subfield><subfield code="c">electronic bk.</subfield><subfield code="9">978-1-84816-814-5</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">1848168144</subfield><subfield code="c">electronic bk.</subfield><subfield code="9">1-84816-814-4</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781848168138</subfield><subfield code="9">978-1-84816-813-8</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">1848168136</subfield><subfield code="9">1-84816-813-6</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)794328402</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV042961103</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-1046</subfield><subfield code="a">DE-1047</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">006.31</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Gyorfi, Laszlo</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Machine Learning for Financial Engineering</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Singapore</subfield><subfield code="b">World Scientific</subfield><subfield code="c">2012</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (261 pages)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Advances in computer science and engineering</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">5.4. Universally Consistent Predictions: Unbounded Y.</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Preface; Contents; 1. On the History of the Growth-Optimal Portfolio M.M. Christensen; 1.1. Introduction and Historical Overview; 1.2. Theoretical Studies of the GOP; 1.2.1. Discrete Time; 1.2.2. Continuous-Time; 1.3. The GOP as an Investment Strategy; 1.3.1. Is the GOP Better? -- The Samuelson Controversy; 1.3.2. Capital Growth and the Mean-Variance Approach; 1.3.2.1. Discrete time; 1.3.2.2. Continuous time; 1.3.3. How Long Does it Take for the GOP to Outperform other Portfolios?; 1.4. The GOP and the Pricing of Financial Assets and Derivatives; 1.4.1. Incomplete Markets</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">1.4.1.1. Utility-Based Pricing1.4.1.2. The Minimal Martingale Measure; 1.4.1.3. Good-Deal Bounds; 1.4.2. A World Without a Risk-Neutral Measure; 1.5. Empirical Studies of the GOP; 1.5.1. Composition of the GOP; 1.5.1.1. Discrete-Time Models; 1.5.1.2. Continuous Time Models; 1.6. Conclusion; References; 2. Empirical Log-Optimal Portfolio Selections: A Survey L. Gyorfi, Gy. Ottucsak and A. Urban; 2.1. Introduction; 2.2. Constantly-Rebalanced Portfolio Selection; 2.2.1. Log-Optimal Portfolio for Memoryless Market Process; 2.2.2. Examples for the Constantly-Rebalanced Portfolio</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">2.2.3. Semi-Log-Optimal Portfolio2.3. Time-Varying Portfolio Selection; 2.3.1. Log-Optimal Portfolio for Stationary Market Process; 2.3.2. Empirical Portfolio Selection; 2.3.3. Regression Function Estimation; 2.3.4. Histogram-Based Strategy; 2.3.5. Kernel-Based Strategy; 2.3.6. Nearest-Neighbor-Based Strategy; 2.3.7. Numerical Results on Empirical Portfolio Selection; References; 3. Log-Optimal Portfolio-Selection Strategies with Proportional Transaction Costs L. Gyorfi and H. Walk; 3.1. Introduction; 3.2. Mathematical Setup: Investment with Proportional Transaction Cost</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">3.3. Experiments on Heuristic Algorithms3.4. Growth-Optimal Portfolio Selection Algorithms; 3.5. Portfolio Selection with Consumption; 3.6. Proofs; References; 4. Growth-Optimal Portfolio Selection with Short Selling and Leverage M. Horvath and A. Urban; 4.1. Introduction; 4.2. Non-Leveraged, Long-Only Investment; 4.3. Short Selling; 4.3.1. No-Ruin Constraints; 4.3.2. Optimality Condition for Short Selling with Cash Account; 4.4. Long-Only Leveraged Investment; 4.4.1. No-Ruin Condition; 4.4.2. Kuhn-Tucker Characterization; 4.5. Short Selling and Leverage; 4.6. Experiments; References</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">5. Nonparametric Sequential Prediction of Stationary Time Series L. Gyorfi and Gy. Ottucsak5.1. Introduction; 5.2. Nonparametric Regression Estimation; 5.2.1. The Regression Problem; 5.2.2. Regression Function Estimation and L2 Error; 5.2.3. Partitioning Estimate; 5.2.4. Kernel Estimate; 5.2.5. Nearest-Neighbor Estimate; 5.2.6. Empirical Error Minimization; 5.3. Universally Consistent Predictions: Bounded Y; 5.3.1. Partition-Based Prediction Strategies; 5.3.2. Kernel-Based Prediction Strategies; 5.3.3. Nearest-Neighbor-Based Prediction Strategy; 5.3.4. Generalized Linear Estimates</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">This volume investigates algorithmic methods based on machine learning in order to design sequential investment strategies for financial markets. Such sequential investment strategies use information collected from the market's past and determine, at the beginning of a trading period, a portfolio; that is, a way to invest the currently available capital among the assets that are available for purchase or investment. The aim is to produce a self-contained text intended for a wide audience, including researchers and graduate students in computer science, finance, statistics, mathematics, and eng</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Machine learning / Industrial applications</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Science</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Computer science</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">COMPUTERS / Enterprise Applications / Business Intelligence Tools</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">COMPUTERS / Intelligence (AI) & Semantics</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Datenverarbeitung</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Informatik</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Naturwissenschaft</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Financial engineering</subfield><subfield code="x">Data processing</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Machine learning</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Investments</subfield><subfield code="x">Data processing</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Financial Engineering</subfield><subfield code="0">(DE-588)4208404-0</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Maschinelles Lernen</subfield><subfield code="0">(DE-588)4193754-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Financial Engineering</subfield><subfield code="0">(DE-588)4208404-0</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Maschinelles Lernen</subfield><subfield code="0">(DE-588)4193754-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Ottucsak, Gyorgy</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Walk, Harro</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=457208</subfield><subfield code="x">Aggregator</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-4-EBA</subfield><subfield code="a">ZDB-4-EBU</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">FAW_PDA_EBA</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">FLA_PDA_EBU</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-028386971</subfield></datafield></record></collection> |
id | DE-604.BV042961103 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T07:13:49Z |
institution | BVB |
isbn | 9781848168145 1848168144 9781848168138 1848168136 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-028386971 |
oclc_num | 794328402 |
open_access_boolean | |
owner | DE-1046 DE-1047 |
owner_facet | DE-1046 DE-1047 |
physical | 1 Online-Ressource (261 pages) |
psigel | ZDB-4-EBA ZDB-4-EBU FAW_PDA_EBA FLA_PDA_EBU |
publishDate | 2012 |
publishDateSearch | 2012 |
publishDateSort | 2012 |
publisher | World Scientific |
record_format | marc |
series2 | Advances in computer science and engineering |
spelling | Gyorfi, Laszlo Verfasser aut Machine Learning for Financial Engineering Singapore World Scientific 2012 1 Online-Ressource (261 pages) txt rdacontent c rdamedia cr rdacarrier Advances in computer science and engineering 5.4. Universally Consistent Predictions: Unbounded Y. Preface; Contents; 1. On the History of the Growth-Optimal Portfolio M.M. Christensen; 1.1. Introduction and Historical Overview; 1.2. Theoretical Studies of the GOP; 1.2.1. Discrete Time; 1.2.2. Continuous-Time; 1.3. The GOP as an Investment Strategy; 1.3.1. Is the GOP Better? -- The Samuelson Controversy; 1.3.2. Capital Growth and the Mean-Variance Approach; 1.3.2.1. Discrete time; 1.3.2.2. Continuous time; 1.3.3. How Long Does it Take for the GOP to Outperform other Portfolios?; 1.4. The GOP and the Pricing of Financial Assets and Derivatives; 1.4.1. Incomplete Markets 1.4.1.1. Utility-Based Pricing1.4.1.2. The Minimal Martingale Measure; 1.4.1.3. Good-Deal Bounds; 1.4.2. A World Without a Risk-Neutral Measure; 1.5. Empirical Studies of the GOP; 1.5.1. Composition of the GOP; 1.5.1.1. Discrete-Time Models; 1.5.1.2. Continuous Time Models; 1.6. Conclusion; References; 2. Empirical Log-Optimal Portfolio Selections: A Survey L. Gyorfi, Gy. Ottucsak and A. Urban; 2.1. Introduction; 2.2. Constantly-Rebalanced Portfolio Selection; 2.2.1. Log-Optimal Portfolio for Memoryless Market Process; 2.2.2. Examples for the Constantly-Rebalanced Portfolio 2.2.3. Semi-Log-Optimal Portfolio2.3. Time-Varying Portfolio Selection; 2.3.1. Log-Optimal Portfolio for Stationary Market Process; 2.3.2. Empirical Portfolio Selection; 2.3.3. Regression Function Estimation; 2.3.4. Histogram-Based Strategy; 2.3.5. Kernel-Based Strategy; 2.3.6. Nearest-Neighbor-Based Strategy; 2.3.7. Numerical Results on Empirical Portfolio Selection; References; 3. Log-Optimal Portfolio-Selection Strategies with Proportional Transaction Costs L. Gyorfi and H. Walk; 3.1. Introduction; 3.2. Mathematical Setup: Investment with Proportional Transaction Cost 3.3. Experiments on Heuristic Algorithms3.4. Growth-Optimal Portfolio Selection Algorithms; 3.5. Portfolio Selection with Consumption; 3.6. Proofs; References; 4. Growth-Optimal Portfolio Selection with Short Selling and Leverage M. Horvath and A. Urban; 4.1. Introduction; 4.2. Non-Leveraged, Long-Only Investment; 4.3. Short Selling; 4.3.1. No-Ruin Constraints; 4.3.2. Optimality Condition for Short Selling with Cash Account; 4.4. Long-Only Leveraged Investment; 4.4.1. No-Ruin Condition; 4.4.2. Kuhn-Tucker Characterization; 4.5. Short Selling and Leverage; 4.6. Experiments; References 5. Nonparametric Sequential Prediction of Stationary Time Series L. Gyorfi and Gy. Ottucsak5.1. Introduction; 5.2. Nonparametric Regression Estimation; 5.2.1. The Regression Problem; 5.2.2. Regression Function Estimation and L2 Error; 5.2.3. Partitioning Estimate; 5.2.4. Kernel Estimate; 5.2.5. Nearest-Neighbor Estimate; 5.2.6. Empirical Error Minimization; 5.3. Universally Consistent Predictions: Bounded Y; 5.3.1. Partition-Based Prediction Strategies; 5.3.2. Kernel-Based Prediction Strategies; 5.3.3. Nearest-Neighbor-Based Prediction Strategy; 5.3.4. Generalized Linear Estimates This volume investigates algorithmic methods based on machine learning in order to design sequential investment strategies for financial markets. Such sequential investment strategies use information collected from the market's past and determine, at the beginning of a trading period, a portfolio; that is, a way to invest the currently available capital among the assets that are available for purchase or investment. The aim is to produce a self-contained text intended for a wide audience, including researchers and graduate students in computer science, finance, statistics, mathematics, and eng Machine learning / Industrial applications Science Computer science COMPUTERS / Enterprise Applications / Business Intelligence Tools bisacsh COMPUTERS / Intelligence (AI) & Semantics bisacsh Datenverarbeitung Informatik Naturwissenschaft Financial engineering Data processing Machine learning Investments Data processing Financial Engineering (DE-588)4208404-0 gnd rswk-swf Maschinelles Lernen (DE-588)4193754-5 gnd rswk-swf Financial Engineering (DE-588)4208404-0 s Maschinelles Lernen (DE-588)4193754-5 s DE-604 Ottucsak, Gyorgy Sonstige oth Walk, Harro Sonstige oth http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=457208 Aggregator Volltext |
spellingShingle | Gyorfi, Laszlo Machine Learning for Financial Engineering Machine learning / Industrial applications Science Computer science COMPUTERS / Enterprise Applications / Business Intelligence Tools bisacsh COMPUTERS / Intelligence (AI) & Semantics bisacsh Datenverarbeitung Informatik Naturwissenschaft Financial engineering Data processing Machine learning Investments Data processing Financial Engineering (DE-588)4208404-0 gnd Maschinelles Lernen (DE-588)4193754-5 gnd |
subject_GND | (DE-588)4208404-0 (DE-588)4193754-5 |
title | Machine Learning for Financial Engineering |
title_auth | Machine Learning for Financial Engineering |
title_exact_search | Machine Learning for Financial Engineering |
title_full | Machine Learning for Financial Engineering |
title_fullStr | Machine Learning for Financial Engineering |
title_full_unstemmed | Machine Learning for Financial Engineering |
title_short | Machine Learning for Financial Engineering |
title_sort | machine learning for financial engineering |
topic | Machine learning / Industrial applications Science Computer science COMPUTERS / Enterprise Applications / Business Intelligence Tools bisacsh COMPUTERS / Intelligence (AI) & Semantics bisacsh Datenverarbeitung Informatik Naturwissenschaft Financial engineering Data processing Machine learning Investments Data processing Financial Engineering (DE-588)4208404-0 gnd Maschinelles Lernen (DE-588)4193754-5 gnd |
topic_facet | Machine learning / Industrial applications Science Computer science COMPUTERS / Enterprise Applications / Business Intelligence Tools COMPUTERS / Intelligence (AI) & Semantics Datenverarbeitung Informatik Naturwissenschaft Financial engineering Data processing Machine learning Investments Data processing Financial Engineering Maschinelles Lernen |
url | http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=457208 |
work_keys_str_mv | AT gyorfilaszlo machinelearningforfinancialengineering AT ottucsakgyorgy machinelearningforfinancialengineering AT walkharro machinelearningforfinancialengineering |