Advances in independent component analysis and learning machines:
Gespeichert in:
Bibliographische Detailangaben
Weitere Verfasser: Bingham, Ella (HerausgeberIn), Kaski, Samuel (HerausgeberIn), Laaksonen, Jorma (HerausgeberIn), Lampinen, Jouko (HerausgeberIn)
Format: Elektronisch E-Book
Sprache:English
Veröffentlicht: Amsterdam Elsevier Academic Press [2015]
Schlagworte:
Online-Zugang:FAW01
TUM01
UER01
URL des Erstveröffentlichers
Beschreibung:Includes index
Front Cover; Advances in Independent Component Analysis and Learning Machines; Copyright; Contents; Preface; About the Editors; List of Contributors; Introduction; A Student and a Co-Worker; Prof. Simon Haykin; Prof. Jos e Pr incipe; Prof. T ulay Adali; Prof. Lu is Borges de Almeida; Prof. Christian Jutten; Prof. Mark Plumbley; Prof. Klaus-Robert M uller and Dr. Andreas Ziehe; Chapter abstracts; Chapter 1; The initial convergence rate of the FastICA algorithm: The ''One-Third Rule''; Scott C. Douglas; Chapter 2; Improved variants of the FastICA algorithm; Zbynvek Koldovsk y and Petr Tichavsk y
Chapter 3A unified probabilistic model for independent and principal component analysis; Aapo Hyv arinen; Chapter 4; Riemannian optimization in complex-valued ICA; Visa Koivunen and Traian Abrudan; Chapter 5; Nonadditive optimization; Zhirong Yang and Irwin King; Chapter 6; Image denoising, local factor analysis, Bayesian Ying-Yang harmony learning; Guangyong Chen, Fengyuan Zhu, Pheng Ann Heng and Lei Xu; Chapter 7; Unsupervised deep learning: A short review; Juha Karhunen, Tapani Raiko and KyungHyun Cho; Chapter 8; From neural PCA to deep unsupervised learning; Harri Valpola; Chapter 9
Two decades of local binary patterns: A surveyMatti Pietik ainen and Guoying Zhao; Chapter 10; Subspace approach in spectral color science; Jussi Parkkinen, Hannu Laamanen and Markku Hauta-Kasari; Chapter 11; From pattern recognition methods to machine vision applications; Heikki K alvi ainen; Chapter 12; Advances in visual concept detection: Ten years of TRECVID; Ville Viitaniemi, Mats Sj oberg, Markus Koskela, Satoru Ishikawa and Jorma Laaksonen; Chapter 13; On the applicability of latent variable modeling to research system data; Ella Bingham and Heikki Mannila; Part I: Methods
Chapter 1: The initial convergence rate of the FastICA algorithm: The ''One-Third Rule''1.1 Introduction; 1.2 Statistical analysis of the FastICA algorithm; 1.3 Stationary point analysis of the FastICA algorithm; 1.4 Initial convergence of the FastICA algorithm for two-source mixtures; 1.4.1 Overview of results; 1.4.2 Preliminaries; 1.4.3 Equal-kurtosis sources case; 1.4.3.1 A bound on the average ICI; 1.4.3.2 The probability density function of the ICI; 1.4.3.3 The average value of the ICI; 1.4.4 Arbitrary-kurtosis sources case
1.5 Initial convergence of the FastICA algorithm for three or more source mixtures1.5.1 Overview of results; 1.5.2 Preliminaries; 1.5.3 Three-source case; 1.5.4 Four-source case; 1.5.5 General m-source case; 1.5.6 Equal-kurtosis m-source case using order statistics; 1.6 Numerical evaluations; 1.7 Conclusion; Appendix; Proof of Theorem 1; Proof of Theorems 2 and 3; Proof of Theorem 4; Proofs of Theorem 5 and Associated Corollaries; Proof of Theorem 6; Proof of Theorem 7; Proof of Theorem 8; Proof of Theorem 9; Proof of Theorem 10; Proof of Theorem 11; Proof of Theorem 12; Acknowledgments
Beschreibung:1 online resource
ISBN:9780128028070

Es ist kein Print-Exemplar vorhanden.

Fernleihe Bestellen Achtung: Nicht im THWS-Bestand! Volltext öffnen