Advances in independent component analysis and learning machines:
Gespeichert in:
Weitere Verfasser: | , , , |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Amsterdam
Elsevier Academic Press
[2015]
|
Schlagworte: | |
Online-Zugang: | FAW01 TUM01 UER01 URL des Erstveröffentlichers |
Beschreibung: | Includes index Front Cover; Advances in Independent Component Analysis and Learning Machines; Copyright; Contents; Preface; About the Editors; List of Contributors; Introduction; A Student and a Co-Worker; Prof. Simon Haykin; Prof. Jos e Pr incipe; Prof. T ulay Adali; Prof. Lu is Borges de Almeida; Prof. Christian Jutten; Prof. Mark Plumbley; Prof. Klaus-Robert M uller and Dr. Andreas Ziehe; Chapter abstracts; Chapter 1; The initial convergence rate of the FastICA algorithm: The ''One-Third Rule''; Scott C. Douglas; Chapter 2; Improved variants of the FastICA algorithm; Zbynvek Koldovsk y and Petr Tichavsk y Chapter 3A unified probabilistic model for independent and principal component analysis; Aapo Hyv arinen; Chapter 4; Riemannian optimization in complex-valued ICA; Visa Koivunen and Traian Abrudan; Chapter 5; Nonadditive optimization; Zhirong Yang and Irwin King; Chapter 6; Image denoising, local factor analysis, Bayesian Ying-Yang harmony learning; Guangyong Chen, Fengyuan Zhu, Pheng Ann Heng and Lei Xu; Chapter 7; Unsupervised deep learning: A short review; Juha Karhunen, Tapani Raiko and KyungHyun Cho; Chapter 8; From neural PCA to deep unsupervised learning; Harri Valpola; Chapter 9 Two decades of local binary patterns: A surveyMatti Pietik ainen and Guoying Zhao; Chapter 10; Subspace approach in spectral color science; Jussi Parkkinen, Hannu Laamanen and Markku Hauta-Kasari; Chapter 11; From pattern recognition methods to machine vision applications; Heikki K alvi ainen; Chapter 12; Advances in visual concept detection: Ten years of TRECVID; Ville Viitaniemi, Mats Sj oberg, Markus Koskela, Satoru Ishikawa and Jorma Laaksonen; Chapter 13; On the applicability of latent variable modeling to research system data; Ella Bingham and Heikki Mannila; Part I: Methods Chapter 1: The initial convergence rate of the FastICA algorithm: The ''One-Third Rule''1.1 Introduction; 1.2 Statistical analysis of the FastICA algorithm; 1.3 Stationary point analysis of the FastICA algorithm; 1.4 Initial convergence of the FastICA algorithm for two-source mixtures; 1.4.1 Overview of results; 1.4.2 Preliminaries; 1.4.3 Equal-kurtosis sources case; 1.4.3.1 A bound on the average ICI; 1.4.3.2 The probability density function of the ICI; 1.4.3.3 The average value of the ICI; 1.4.4 Arbitrary-kurtosis sources case 1.5 Initial convergence of the FastICA algorithm for three or more source mixtures1.5.1 Overview of results; 1.5.2 Preliminaries; 1.5.3 Three-source case; 1.5.4 Four-source case; 1.5.5 General m-source case; 1.5.6 Equal-kurtosis m-source case using order statistics; 1.6 Numerical evaluations; 1.7 Conclusion; Appendix; Proof of Theorem 1; Proof of Theorems 2 and 3; Proof of Theorem 4; Proofs of Theorem 5 and Associated Corollaries; Proof of Theorem 6; Proof of Theorem 7; Proof of Theorem 8; Proof of Theorem 9; Proof of Theorem 10; Proof of Theorem 11; Proof of Theorem 12; Acknowledgments |
Beschreibung: | 1 online resource |
ISBN: | 9780128028070 |
Internformat
MARC
LEADER | 00000nmm a2200000zc 4500 | ||
---|---|---|---|
001 | BV042940835 | ||
003 | DE-604 | ||
005 | 20210224 | ||
007 | cr|uuu---uuuuu | ||
008 | 151021s2015 |||| o||u| ||||||eng d | ||
020 | |a 9780128028070 |9 978-0-12-802807-0 | ||
024 | 7 | |a 10.1016/C2014-0-02754-2 |2 doi | |
035 | |a (OCoLC)951840223 | ||
035 | |a (DE-599)BVBBV042940835 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
049 | |a DE-91 |a DE-1046 |a DE-83 |a DE-29 | ||
084 | |a ST 300 |0 (DE-625)143650: |2 rvk | ||
245 | 1 | 0 | |a Advances in independent component analysis and learning machines |c edited by Ella Bingham, Samuel Kaski, Jorma Laaksonen, Jouko Lampinen |
264 | 1 | |a Amsterdam |b Elsevier Academic Press |c [2015] | |
264 | 4 | |c © 2015 | |
300 | |a 1 online resource | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
500 | |a Includes index | ||
500 | |a Front Cover; Advances in Independent Component Analysis and Learning Machines; Copyright; Contents; Preface; About the Editors; List of Contributors; Introduction; A Student and a Co-Worker; Prof. Simon Haykin; Prof. Jos e Pr incipe; Prof. T ulay Adali; Prof. Lu is Borges de Almeida; Prof. Christian Jutten; Prof. Mark Plumbley; Prof. Klaus-Robert M uller and Dr. Andreas Ziehe; Chapter abstracts; Chapter 1; The initial convergence rate of the FastICA algorithm: The ''One-Third Rule''; Scott C. Douglas; Chapter 2; Improved variants of the FastICA algorithm; Zbynvek Koldovsk y and Petr Tichavsk y | ||
500 | |a Chapter 3A unified probabilistic model for independent and principal component analysis; Aapo Hyv arinen; Chapter 4; Riemannian optimization in complex-valued ICA; Visa Koivunen and Traian Abrudan; Chapter 5; Nonadditive optimization; Zhirong Yang and Irwin King; Chapter 6; Image denoising, local factor analysis, Bayesian Ying-Yang harmony learning; Guangyong Chen, Fengyuan Zhu, Pheng Ann Heng and Lei Xu; Chapter 7; Unsupervised deep learning: A short review; Juha Karhunen, Tapani Raiko and KyungHyun Cho; Chapter 8; From neural PCA to deep unsupervised learning; Harri Valpola; Chapter 9 | ||
500 | |a Two decades of local binary patterns: A surveyMatti Pietik ainen and Guoying Zhao; Chapter 10; Subspace approach in spectral color science; Jussi Parkkinen, Hannu Laamanen and Markku Hauta-Kasari; Chapter 11; From pattern recognition methods to machine vision applications; Heikki K alvi ainen; Chapter 12; Advances in visual concept detection: Ten years of TRECVID; Ville Viitaniemi, Mats Sj oberg, Markus Koskela, Satoru Ishikawa and Jorma Laaksonen; Chapter 13; On the applicability of latent variable modeling to research system data; Ella Bingham and Heikki Mannila; Part I: Methods | ||
500 | |a Chapter 1: The initial convergence rate of the FastICA algorithm: The ''One-Third Rule''1.1 Introduction; 1.2 Statistical analysis of the FastICA algorithm; 1.3 Stationary point analysis of the FastICA algorithm; 1.4 Initial convergence of the FastICA algorithm for two-source mixtures; 1.4.1 Overview of results; 1.4.2 Preliminaries; 1.4.3 Equal-kurtosis sources case; 1.4.3.1 A bound on the average ICI; 1.4.3.2 The probability density function of the ICI; 1.4.3.3 The average value of the ICI; 1.4.4 Arbitrary-kurtosis sources case | ||
500 | |a 1.5 Initial convergence of the FastICA algorithm for three or more source mixtures1.5.1 Overview of results; 1.5.2 Preliminaries; 1.5.3 Three-source case; 1.5.4 Four-source case; 1.5.5 General m-source case; 1.5.6 Equal-kurtosis m-source case using order statistics; 1.6 Numerical evaluations; 1.7 Conclusion; Appendix; Proof of Theorem 1; Proof of Theorems 2 and 3; Proof of Theorem 4; Proofs of Theorem 5 and Associated Corollaries; Proof of Theorem 6; Proof of Theorem 7; Proof of Theorem 8; Proof of Theorem 9; Proof of Theorem 10; Proof of Theorem 11; Proof of Theorem 12; Acknowledgments | ||
650 | 4 | |a Pattern recognition systems | |
650 | 4 | |a Image processing / Digital techniques | |
650 | 4 | |a Machine learning | |
650 | 0 | 7 | |a Unabhängige Komponentenanalyse |0 (DE-588)4812492-8 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Unabhängige Komponentenanalyse |0 (DE-588)4812492-8 |D s |
689 | 0 | |5 DE-604 | |
700 | 1 | |a Bingham, Ella |0 (DE-588)1074261569 |4 edt | |
700 | 1 | |a Kaski, Samuel |4 edt | |
700 | 1 | |a Laaksonen, Jorma |4 edt | |
700 | 1 | |a Lampinen, Jouko |4 edt | |
700 | 1 | |a Oja, Erkki |e Sonstige |4 oth | |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |z 978-0-12-802806-3 |
856 | 4 | 0 | |u http://www.sciencedirect.com/science/book/9780128028063 |x Verlag |z URL des Erstveröffentlichers |3 Volltext |
912 | |a ZDB-33-ESD |a ZDB-33-EBS |a ebook | ||
940 | 1 | |q FLA_PDA_ESD | |
999 | |a oai:aleph.bib-bvb.de:BVB01-028367326 | ||
966 | e | |u http://www.sciencedirect.com/science/book/9780128028063 |l FAW01 |p ZDB-33-ESD |q FAW_PDA_ESD |x Verlag |3 Volltext | |
966 | e | |u http://www.sciencedirect.com/science/book/9780128028063 |l TUM01 |p ZDB-33-ESD |q TUM_PDA_ESD_ENG_Kauf |x Verlag |3 Volltext | |
966 | e | |u http://www.sciencedirect.com/science/book/9780128028063 |l UER01 |p ZDB-33-EBS |q UER_PDA_EBS_Kauf |x Verlag |3 Volltext |
Datensatz im Suchindex
_version_ | 1804175251428343808 |
---|---|
any_adam_object | |
author2 | Bingham, Ella Kaski, Samuel Laaksonen, Jorma Lampinen, Jouko |
author2_role | edt edt edt edt |
author2_variant | e b eb s k sk j l jl j l jl |
author_GND | (DE-588)1074261569 |
author_facet | Bingham, Ella Kaski, Samuel Laaksonen, Jorma Lampinen, Jouko |
building | Verbundindex |
bvnumber | BV042940835 |
classification_rvk | ST 300 |
collection | ZDB-33-ESD ZDB-33-EBS ebook |
ctrlnum | (OCoLC)951840223 (DE-599)BVBBV042940835 |
discipline | Informatik |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>05081nmm a2200565zc 4500</leader><controlfield tag="001">BV042940835</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20210224 </controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">151021s2015 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780128028070</subfield><subfield code="9">978-0-12-802807-0</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/C2014-0-02754-2</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)951840223</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV042940835</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-91</subfield><subfield code="a">DE-1046</subfield><subfield code="a">DE-83</subfield><subfield code="a">DE-29</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">ST 300</subfield><subfield code="0">(DE-625)143650:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Advances in independent component analysis and learning machines</subfield><subfield code="c">edited by Ella Bingham, Samuel Kaski, Jorma Laaksonen, Jouko Lampinen</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Amsterdam</subfield><subfield code="b">Elsevier Academic Press</subfield><subfield code="c">[2015]</subfield></datafield><datafield tag="264" ind1=" " ind2="4"><subfield code="c">© 2015</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Includes index</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Front Cover; Advances in Independent Component Analysis and Learning Machines; Copyright; Contents; Preface; About the Editors; List of Contributors; Introduction; A Student and a Co-Worker; Prof. Simon Haykin; Prof. Jos e Pr incipe; Prof. T ulay Adali; Prof. Lu is Borges de Almeida; Prof. Christian Jutten; Prof. Mark Plumbley; Prof. Klaus-Robert M uller and Dr. Andreas Ziehe; Chapter abstracts; Chapter 1; The initial convergence rate of the FastICA algorithm: The ''One-Third Rule''; Scott C. Douglas; Chapter 2; Improved variants of the FastICA algorithm; Zbynvek Koldovsk y and Petr Tichavsk y</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Chapter 3A unified probabilistic model for independent and principal component analysis; Aapo Hyv arinen; Chapter 4; Riemannian optimization in complex-valued ICA; Visa Koivunen and Traian Abrudan; Chapter 5; Nonadditive optimization; Zhirong Yang and Irwin King; Chapter 6; Image denoising, local factor analysis, Bayesian Ying-Yang harmony learning; Guangyong Chen, Fengyuan Zhu, Pheng Ann Heng and Lei Xu; Chapter 7; Unsupervised deep learning: A short review; Juha Karhunen, Tapani Raiko and KyungHyun Cho; Chapter 8; From neural PCA to deep unsupervised learning; Harri Valpola; Chapter 9</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Two decades of local binary patterns: A surveyMatti Pietik ainen and Guoying Zhao; Chapter 10; Subspace approach in spectral color science; Jussi Parkkinen, Hannu Laamanen and Markku Hauta-Kasari; Chapter 11; From pattern recognition methods to machine vision applications; Heikki K alvi ainen; Chapter 12; Advances in visual concept detection: Ten years of TRECVID; Ville Viitaniemi, Mats Sj oberg, Markus Koskela, Satoru Ishikawa and Jorma Laaksonen; Chapter 13; On the applicability of latent variable modeling to research system data; Ella Bingham and Heikki Mannila; Part I: Methods</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Chapter 1: The initial convergence rate of the FastICA algorithm: The ''One-Third Rule''1.1 Introduction; 1.2 Statistical analysis of the FastICA algorithm; 1.3 Stationary point analysis of the FastICA algorithm; 1.4 Initial convergence of the FastICA algorithm for two-source mixtures; 1.4.1 Overview of results; 1.4.2 Preliminaries; 1.4.3 Equal-kurtosis sources case; 1.4.3.1 A bound on the average ICI; 1.4.3.2 The probability density function of the ICI; 1.4.3.3 The average value of the ICI; 1.4.4 Arbitrary-kurtosis sources case</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">1.5 Initial convergence of the FastICA algorithm for three or more source mixtures1.5.1 Overview of results; 1.5.2 Preliminaries; 1.5.3 Three-source case; 1.5.4 Four-source case; 1.5.5 General m-source case; 1.5.6 Equal-kurtosis m-source case using order statistics; 1.6 Numerical evaluations; 1.7 Conclusion; Appendix; Proof of Theorem 1; Proof of Theorems 2 and 3; Proof of Theorem 4; Proofs of Theorem 5 and Associated Corollaries; Proof of Theorem 6; Proof of Theorem 7; Proof of Theorem 8; Proof of Theorem 9; Proof of Theorem 10; Proof of Theorem 11; Proof of Theorem 12; Acknowledgments</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Pattern recognition systems</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Image processing / Digital techniques</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Machine learning</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Unabhängige Komponentenanalyse</subfield><subfield code="0">(DE-588)4812492-8</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Unabhängige Komponentenanalyse</subfield><subfield code="0">(DE-588)4812492-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Bingham, Ella</subfield><subfield code="0">(DE-588)1074261569</subfield><subfield code="4">edt</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Kaski, Samuel</subfield><subfield code="4">edt</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Laaksonen, Jorma</subfield><subfield code="4">edt</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Lampinen, Jouko</subfield><subfield code="4">edt</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Oja, Erkki</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">978-0-12-802806-3</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">http://www.sciencedirect.com/science/book/9780128028063</subfield><subfield code="x">Verlag</subfield><subfield code="z">URL des Erstveröffentlichers</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-33-ESD</subfield><subfield code="a">ZDB-33-EBS</subfield><subfield code="a">ebook</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">FLA_PDA_ESD</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-028367326</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">http://www.sciencedirect.com/science/book/9780128028063</subfield><subfield code="l">FAW01</subfield><subfield code="p">ZDB-33-ESD</subfield><subfield code="q">FAW_PDA_ESD</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">http://www.sciencedirect.com/science/book/9780128028063</subfield><subfield code="l">TUM01</subfield><subfield code="p">ZDB-33-ESD</subfield><subfield code="q">TUM_PDA_ESD_ENG_Kauf</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">http://www.sciencedirect.com/science/book/9780128028063</subfield><subfield code="l">UER01</subfield><subfield code="p">ZDB-33-EBS</subfield><subfield code="q">UER_PDA_EBS_Kauf</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV042940835 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T07:13:19Z |
institution | BVB |
isbn | 9780128028070 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-028367326 |
oclc_num | 951840223 |
open_access_boolean | |
owner | DE-91 DE-BY-TUM DE-1046 DE-83 DE-29 |
owner_facet | DE-91 DE-BY-TUM DE-1046 DE-83 DE-29 |
physical | 1 online resource |
psigel | ZDB-33-ESD ZDB-33-EBS ebook FLA_PDA_ESD ZDB-33-ESD FAW_PDA_ESD ZDB-33-ESD TUM_PDA_ESD_ENG_Kauf ZDB-33-EBS UER_PDA_EBS_Kauf |
publishDate | 2015 |
publishDateSearch | 2015 |
publishDateSort | 2015 |
publisher | Elsevier Academic Press |
record_format | marc |
spelling | Advances in independent component analysis and learning machines edited by Ella Bingham, Samuel Kaski, Jorma Laaksonen, Jouko Lampinen Amsterdam Elsevier Academic Press [2015] © 2015 1 online resource txt rdacontent c rdamedia cr rdacarrier Includes index Front Cover; Advances in Independent Component Analysis and Learning Machines; Copyright; Contents; Preface; About the Editors; List of Contributors; Introduction; A Student and a Co-Worker; Prof. Simon Haykin; Prof. Jos e Pr incipe; Prof. T ulay Adali; Prof. Lu is Borges de Almeida; Prof. Christian Jutten; Prof. Mark Plumbley; Prof. Klaus-Robert M uller and Dr. Andreas Ziehe; Chapter abstracts; Chapter 1; The initial convergence rate of the FastICA algorithm: The ''One-Third Rule''; Scott C. Douglas; Chapter 2; Improved variants of the FastICA algorithm; Zbynvek Koldovsk y and Petr Tichavsk y Chapter 3A unified probabilistic model for independent and principal component analysis; Aapo Hyv arinen; Chapter 4; Riemannian optimization in complex-valued ICA; Visa Koivunen and Traian Abrudan; Chapter 5; Nonadditive optimization; Zhirong Yang and Irwin King; Chapter 6; Image denoising, local factor analysis, Bayesian Ying-Yang harmony learning; Guangyong Chen, Fengyuan Zhu, Pheng Ann Heng and Lei Xu; Chapter 7; Unsupervised deep learning: A short review; Juha Karhunen, Tapani Raiko and KyungHyun Cho; Chapter 8; From neural PCA to deep unsupervised learning; Harri Valpola; Chapter 9 Two decades of local binary patterns: A surveyMatti Pietik ainen and Guoying Zhao; Chapter 10; Subspace approach in spectral color science; Jussi Parkkinen, Hannu Laamanen and Markku Hauta-Kasari; Chapter 11; From pattern recognition methods to machine vision applications; Heikki K alvi ainen; Chapter 12; Advances in visual concept detection: Ten years of TRECVID; Ville Viitaniemi, Mats Sj oberg, Markus Koskela, Satoru Ishikawa and Jorma Laaksonen; Chapter 13; On the applicability of latent variable modeling to research system data; Ella Bingham and Heikki Mannila; Part I: Methods Chapter 1: The initial convergence rate of the FastICA algorithm: The ''One-Third Rule''1.1 Introduction; 1.2 Statistical analysis of the FastICA algorithm; 1.3 Stationary point analysis of the FastICA algorithm; 1.4 Initial convergence of the FastICA algorithm for two-source mixtures; 1.4.1 Overview of results; 1.4.2 Preliminaries; 1.4.3 Equal-kurtosis sources case; 1.4.3.1 A bound on the average ICI; 1.4.3.2 The probability density function of the ICI; 1.4.3.3 The average value of the ICI; 1.4.4 Arbitrary-kurtosis sources case 1.5 Initial convergence of the FastICA algorithm for three or more source mixtures1.5.1 Overview of results; 1.5.2 Preliminaries; 1.5.3 Three-source case; 1.5.4 Four-source case; 1.5.5 General m-source case; 1.5.6 Equal-kurtosis m-source case using order statistics; 1.6 Numerical evaluations; 1.7 Conclusion; Appendix; Proof of Theorem 1; Proof of Theorems 2 and 3; Proof of Theorem 4; Proofs of Theorem 5 and Associated Corollaries; Proof of Theorem 6; Proof of Theorem 7; Proof of Theorem 8; Proof of Theorem 9; Proof of Theorem 10; Proof of Theorem 11; Proof of Theorem 12; Acknowledgments Pattern recognition systems Image processing / Digital techniques Machine learning Unabhängige Komponentenanalyse (DE-588)4812492-8 gnd rswk-swf Unabhängige Komponentenanalyse (DE-588)4812492-8 s DE-604 Bingham, Ella (DE-588)1074261569 edt Kaski, Samuel edt Laaksonen, Jorma edt Lampinen, Jouko edt Oja, Erkki Sonstige oth Erscheint auch als Druck-Ausgabe 978-0-12-802806-3 http://www.sciencedirect.com/science/book/9780128028063 Verlag URL des Erstveröffentlichers Volltext |
spellingShingle | Advances in independent component analysis and learning machines Pattern recognition systems Image processing / Digital techniques Machine learning Unabhängige Komponentenanalyse (DE-588)4812492-8 gnd |
subject_GND | (DE-588)4812492-8 |
title | Advances in independent component analysis and learning machines |
title_auth | Advances in independent component analysis and learning machines |
title_exact_search | Advances in independent component analysis and learning machines |
title_full | Advances in independent component analysis and learning machines edited by Ella Bingham, Samuel Kaski, Jorma Laaksonen, Jouko Lampinen |
title_fullStr | Advances in independent component analysis and learning machines edited by Ella Bingham, Samuel Kaski, Jorma Laaksonen, Jouko Lampinen |
title_full_unstemmed | Advances in independent component analysis and learning machines edited by Ella Bingham, Samuel Kaski, Jorma Laaksonen, Jouko Lampinen |
title_short | Advances in independent component analysis and learning machines |
title_sort | advances in independent component analysis and learning machines |
topic | Pattern recognition systems Image processing / Digital techniques Machine learning Unabhängige Komponentenanalyse (DE-588)4812492-8 gnd |
topic_facet | Pattern recognition systems Image processing / Digital techniques Machine learning Unabhängige Komponentenanalyse |
url | http://www.sciencedirect.com/science/book/9780128028063 |
work_keys_str_mv | AT binghamella advancesinindependentcomponentanalysisandlearningmachines AT kaskisamuel advancesinindependentcomponentanalysisandlearningmachines AT laaksonenjorma advancesinindependentcomponentanalysisandlearningmachines AT lampinenjouko advancesinindependentcomponentanalysisandlearningmachines AT ojaerkki advancesinindependentcomponentanalysisandlearningmachines |