Concepts in quantum field theory: a practitioner's toolkit
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
Cham [u.a.]
Springer
2016
|
Schriftenreihe: | UNITEXT for Physics
|
Schlagworte: | |
Online-Zugang: | Inhaltsverzeichnis |
Beschreibung: | XIII, 190 S. graph. Darst. |
ISBN: | 9783319229652 9783319229669 |
Internformat
MARC
LEADER | 00000nam a2200000 c 4500 | ||
---|---|---|---|
001 | BV042886414 | ||
003 | DE-604 | ||
005 | 20170623 | ||
007 | t | ||
008 | 150923s2016 d||| |||| 00||| eng d | ||
020 | |a 9783319229652 |9 978-3-319-22965-2 | ||
020 | |a 9783319229669 |c eBook |9 978-3-319-22966-9 | ||
035 | |a (OCoLC)927111646 | ||
035 | |a (DE-599)BVBBV042886414 | ||
040 | |a DE-604 |b ger |e rakwb | ||
041 | 0 | |a eng | |
049 | |a DE-19 |a DE-11 |a DE-20 |a DE-703 |a DE-91G | ||
084 | |a UO 4000 |0 (DE-625)146237: |2 rvk | ||
084 | |a PHY 023f |2 stub | ||
100 | 1 | |a Ilisie, Victor |e Verfasser |0 (DE-588)1076838022 |4 aut | |
245 | 1 | 0 | |a Concepts in quantum field theory |b a practitioner's toolkit |c Victor Ilisie |
264 | 1 | |a Cham [u.a.] |b Springer |c 2016 | |
300 | |a XIII, 190 S. |b graph. Darst. | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
490 | 0 | |a UNITEXT for Physics | |
650 | 4 | |a Quantentheorie | |
650 | 4 | |a Physics | |
650 | 4 | |a Quantum theory | |
650 | 0 | 7 | |a Quantenfeldtheorie |0 (DE-588)4047984-5 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Quantenfeldtheorie |0 (DE-588)4047984-5 |D s |
689 | 0 | |5 DE-604 | |
776 | 0 | 8 | |i Erscheint auch als |n Online-Ausgabe |o 10.1007/978-3-319-22966-9 |
856 | 4 | 2 | |m HBZ Datenaustausch |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=028315066&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
999 | |a oai:aleph.bib-bvb.de:BVB01-028315066 |
Datensatz im Suchindex
_version_ | 1804175173654413312 |
---|---|
adam_text | Titel: Concepts in quantum field theory
Autor: Ilisie, Victor
Jahr: 2016
Contents
1 Vectors, Tensors, Manifolds and Special Relativity........................1
1.1 Tensor Algebra....................................................................1
1.2 Tensor Calculus..................................................................12
1.3 Manifolds..........................................................................15
1.4 Comments on Special Relativity............................................22
Further Reading............................................................................27
2 Lagrangians, Hamiltonians and Noether s Theorem......................29
2.1 Lagragian Formalism............................................................29
2.2 Noether s Theorem..............................................................31
2.3 Examples............................................................................32
2.4 Hamiltonian Formalism........................................................35
2.5 Continuous Systems............................................................36
2.6 Hamiltonian Formalism........................................................39
2.7 Noether s Theorem (The General Formulation)........................40
2.8 Examples............................................................................43
Further Reading............................................................................46
3 Relativistic Kinematics and Phase Space......................................47
3.1 Conventions and Notations....................................................47
3.2 Process: a — 1+2..............................................................48
3.3 Process: a— 1+2 + 3........................................................49
3.4 Process: 1+2— 3+4........................................................50
3.5 Lorentz Invariant Phase Space..............................................52
Further Reading............................................................................55
4 Angular Distributions..................................................................57
4.1 Three Body Angular Distributions..........................................57
4.2 Four Body Angular Distributions..........................................61
Further Reading............................................................................67
XI
xii Contents
5 Dirac Algebra..............................................................................69
5.1 Dirac Matrices....................................................................69
5.2 Dirac Traces........................................................................71
5.3 Spinors and Lorentz Transformations......................................72
5.4 Quantum Electrodynamics....................................................74
Further Reading............................................................................83
6 Dimensional Regularization. Ultraviolet and Infrared
Divergences................................................................................85
6.1 Master Integral....................................................................85
6.2 Useful Results....................................................................87
6.3 Example: Cancellation of UV Divergences..............................88
6.4 Feynman Parametrization......................................................89
6.5 Example: UV Pole..............................................................91
6.6 Example: IR Poles..............................................................91
Further Reading............................................................................93
7 QED Renormalization..................................................................95
7.1 QED Lagrangian..................................................................95
7.2 Fermionic Propagator, Mass and Field Renormalization............95
7.3 Bosonic Propagator and Field Renormalization........................97
7.4 Vertex Correction................................................................98
7.5 Renormalization to All Orders..............................................99
7.6 One-Loop Renormalization Example......................................102
7.7 Renormalization and Tadpoles..............................................109
Further Reading............................................................................Ill
8 One-Loop Two and Three-Point Functions....................................113
8.1 Two-Point Function............................................................113
8.2 IR Divergences and the Two-Point Function..........................117
8.3 Three-Point Function............................................................120
8.4 IR Divergences and the Three-Point Function..........................123
8.5 Two and Three-Body Phase Space in D Dimensions................127
8.6 Cancellation of IR Divergences............................................128
8.7 Introduction to Two-Loops....................................................136
Further Reading............................................................................140
9 Massive Spin One and Renormalizable Gauges............................141
9.1 Unitary Gauge....................................................................141
9.2 Rc Gauges..........................................................................144
9.3 Gauge Fixing Lagrangian and Renormalization........................147
Further Reading............................................................................155
Contents xiii
10 Symmetries and Effective Vertices................................................157
10.1 Higgs Decay to a Pair of Photons..........................................157
Further Reading............................................................................161
11 Effective Field Theory..................................................................163
11.1 Effective Lagrangian............................................................163
11.2 Renormalization Group Equations..........................................164
11.3 Matching............................................................................167
Further Reading............................................................................172
12 Optical Theorem..........................................................................173
12.1 Optical Theorem Deduction..................................................173
12.2 One-Loop Example..............................................................176
Further Reading............................................................................178
Appendix A: Master Integral..............................................................179
Appendix B: Renormalization Group Equations..................................183
Appendix C: Feynman Rules for Derivative Couplings........................189
|
any_adam_object | 1 |
author | Ilisie, Victor |
author_GND | (DE-588)1076838022 |
author_facet | Ilisie, Victor |
author_role | aut |
author_sort | Ilisie, Victor |
author_variant | v i vi |
building | Verbundindex |
bvnumber | BV042886414 |
classification_rvk | UO 4000 |
classification_tum | PHY 023f |
ctrlnum | (OCoLC)927111646 (DE-599)BVBBV042886414 |
discipline | Physik |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01509nam a2200397 c 4500</leader><controlfield tag="001">BV042886414</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20170623 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">150923s2016 d||| |||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783319229652</subfield><subfield code="9">978-3-319-22965-2</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783319229669</subfield><subfield code="c">eBook</subfield><subfield code="9">978-3-319-22966-9</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)927111646</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV042886414</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-19</subfield><subfield code="a">DE-11</subfield><subfield code="a">DE-20</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-91G</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">UO 4000</subfield><subfield code="0">(DE-625)146237:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">PHY 023f</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Ilisie, Victor</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)1076838022</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Concepts in quantum field theory</subfield><subfield code="b">a practitioner's toolkit</subfield><subfield code="c">Victor Ilisie</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Cham [u.a.]</subfield><subfield code="b">Springer</subfield><subfield code="c">2016</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">XIII, 190 S.</subfield><subfield code="b">graph. Darst.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">UNITEXT for Physics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Quantentheorie</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Physics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Quantum theory</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Quantenfeldtheorie</subfield><subfield code="0">(DE-588)4047984-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Quantenfeldtheorie</subfield><subfield code="0">(DE-588)4047984-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Online-Ausgabe</subfield><subfield code="o">10.1007/978-3-319-22966-9</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">HBZ Datenaustausch</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=028315066&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-028315066</subfield></datafield></record></collection> |
id | DE-604.BV042886414 |
illustrated | Illustrated |
indexdate | 2024-07-10T07:12:05Z |
institution | BVB |
isbn | 9783319229652 9783319229669 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-028315066 |
oclc_num | 927111646 |
open_access_boolean | |
owner | DE-19 DE-BY-UBM DE-11 DE-20 DE-703 DE-91G DE-BY-TUM |
owner_facet | DE-19 DE-BY-UBM DE-11 DE-20 DE-703 DE-91G DE-BY-TUM |
physical | XIII, 190 S. graph. Darst. |
publishDate | 2016 |
publishDateSearch | 2016 |
publishDateSort | 2016 |
publisher | Springer |
record_format | marc |
series2 | UNITEXT for Physics |
spelling | Ilisie, Victor Verfasser (DE-588)1076838022 aut Concepts in quantum field theory a practitioner's toolkit Victor Ilisie Cham [u.a.] Springer 2016 XIII, 190 S. graph. Darst. txt rdacontent n rdamedia nc rdacarrier UNITEXT for Physics Quantentheorie Physics Quantum theory Quantenfeldtheorie (DE-588)4047984-5 gnd rswk-swf Quantenfeldtheorie (DE-588)4047984-5 s DE-604 Erscheint auch als Online-Ausgabe 10.1007/978-3-319-22966-9 HBZ Datenaustausch application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=028315066&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis |
spellingShingle | Ilisie, Victor Concepts in quantum field theory a practitioner's toolkit Quantentheorie Physics Quantum theory Quantenfeldtheorie (DE-588)4047984-5 gnd |
subject_GND | (DE-588)4047984-5 |
title | Concepts in quantum field theory a practitioner's toolkit |
title_auth | Concepts in quantum field theory a practitioner's toolkit |
title_exact_search | Concepts in quantum field theory a practitioner's toolkit |
title_full | Concepts in quantum field theory a practitioner's toolkit Victor Ilisie |
title_fullStr | Concepts in quantum field theory a practitioner's toolkit Victor Ilisie |
title_full_unstemmed | Concepts in quantum field theory a practitioner's toolkit Victor Ilisie |
title_short | Concepts in quantum field theory |
title_sort | concepts in quantum field theory a practitioner s toolkit |
title_sub | a practitioner's toolkit |
topic | Quantentheorie Physics Quantum theory Quantenfeldtheorie (DE-588)4047984-5 gnd |
topic_facet | Quantentheorie Physics Quantum theory Quantenfeldtheorie |
url | http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=028315066&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
work_keys_str_mv | AT ilisievictor conceptsinquantumfieldtheoryapractitionerstoolkit |