The quantum physics of atomic frequency standards: recent developments
Gespeichert in:
Hauptverfasser: | , |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
Boca Raton
CRC Press
[2016]
|
Schlagworte: | |
Online-Zugang: | Klappentext Inhaltsverzeichnis |
Beschreibung: | XX, 466 Seiten Illustrationen |
ISBN: | 9781466576957 1466576952 |
Internformat
MARC
LEADER | 00000nam a2200000 c 4500 | ||
---|---|---|---|
001 | BV042882444 | ||
003 | DE-604 | ||
005 | 20160520 | ||
007 | t | ||
008 | 150922s2016 a||| |||| 00||| eng d | ||
020 | |a 9781466576957 |9 978-1-4665-7695-7 | ||
020 | |a 1466576952 |c hardback |9 1-4665-7695-2 | ||
035 | |a (OCoLC)936553368 | ||
035 | |a (DE-599)GBV832578665 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
049 | |a DE-703 | ||
084 | |a UK 1250 |0 (DE-625)145793: |2 rvk | ||
100 | 1 | |a Vanier, Jacques |e Verfasser |4 aut | |
245 | 1 | 0 | |a The quantum physics of atomic frequency standards |b recent developments |c Jacques Vanier, Cipriana Tomescu |
264 | 1 | |a Boca Raton |b CRC Press |c [2016] | |
300 | |a XX, 466 Seiten |b Illustrationen | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
650 | 0 | 7 | |a Eigenfrequenz |0 (DE-588)4135597-0 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Atomuhr |0 (DE-588)4259141-7 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Quantenmechanik |0 (DE-588)4047989-4 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Atomuhr |0 (DE-588)4259141-7 |D s |
689 | 0 | 1 | |a Eigenfrequenz |0 (DE-588)4135597-0 |D s |
689 | 0 | 2 | |a Quantenmechanik |0 (DE-588)4047989-4 |D s |
689 | 0 | |5 DE-604 | |
700 | 1 | |a Tomescu, Cipriana |e Verfasser |4 aut | |
856 | 4 | 2 | |m Digitalisierung UB Bayreuth - ADAM Catalogue Enrichment |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=028311249&sequence=000003&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Klappentext |
856 | 4 | 2 | |m Digitalisierung UB Bayreuth - ADAM Catalogue Enrichment |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=028311249&sequence=000004&line_number=0002&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
999 | |a oai:aleph.bib-bvb.de:BVB01-028311249 |
Datensatz im Suchindex
_version_ | 1804175168875003904 |
---|---|
adam_text | Physics
The Quantum Physics of Atomic Frequency Standards: Recent Developments covers advances in atomic frequency standards (atomic clocks) from the last several decades. It explains the use of various techniques, such as laser optical pumping, coherent population trapping, laser cooling, and electromagnetic and optical trapping, in the implementation of classical microwave and optical atomic frequency standards.
The book first discusses improvements to conventional atomic frequency standards, highlighting the main limitations of those frequency standards and the physical basis of the limitations. It then describes how advances in the theory and applications of atomic physics have opened new avenues in frequency standards. The authors go on to explore the research and development of new microwave and optical frequency standards before presenting the results in frequency stability and accuracy achieved with these new frequency standards.
They also illustrate the application of atomic clocks in metrology, telecommunications, navigation, and other areas and give some insight into future work.
Features
• Describes the basic physics, including quantum mechanics, behind the operation of atomic clocks
• Explores new frequency standards that provide better stability and accuracy than older, more conventional standards
• Discusses the importance of the field in the general context of physics
• Gives an extensive list of the most important references in the field
Building on the success of the previous two volumes, this up-to-date, in-depth book examines the vast improvements to atomic clocks that have occurred in the last 25 years. The improved stability and accuracy enable the verification of physical concepts used in fundamental theories, such as relativity, as well as the stability of fundamental constants intrinsic to those theories.
Contents
F?
Preface..............................................................xiii
Introduction.........................................................xvii
Authors...............................................................xix
Chapter 1 Microwave Atomic Frequency Standards: Review and Recent
Developments................................................1
1.1 Classical Atomic Frequency Standards..................2
1.1.1 Cs Beam Frequency Standard.....................2
1.1.1.1 Description of the Approach Using
Magnetic State Selection..............3
L1.1.2 Review of Frequency Shifts and Accuracy.... 7
1.1.1.3 Frequency Stability of the Cs Beam
Standard.............................15
1.1.1.4 Recent Accomplishments................16
1.1.2 Hydrogen Maser................................33
1.1.2.1 Active Hydrogen Maser.................33
1.1.2.2 Passive Hydrogen Maser................48
1.1.2.3 Frequency Stability of the Hydrogen
Maser................................53
1.1.2.4 State of the Art of Recent
Developments and Realizations........57
1.1.3 Optically Pumped Rb Frequency Standards.......69
1.1.3.1 General Description...................69
1.1.3.2 State-of-the-Art Development..........71
1.2 Other Atomic Microwave Frequency Standards...........82
1.2.1 199Hg+ Ion Frequency Standard............... 83
1.2.1.1 General Description...................83
1.2.1.2 Frequency Shifts......................85
1.2.1.3 Linear Trap...........................88
1.2.2 Other Ions in a Paul Trap.....................90
1.2.2.1 mYb+ and 173Yb+ Ion Microwave
Frequency Standards..................91
1.2.2.2 201Hg+ Ion Microwave Frequency
Standard.............................92
1.3 On the Limits of Classical Microwave Atomic Frequency
Standards............................................93
Appendix l.A: Formula for Second-Order Doppler Shift.......94
Appendix l.B: Phase Shift between the Arms of Ramsey Cavity.95
v
vi
Contents
Appendix l.C: Square Wave Frequency Modulation
and Frequency Shifts...........................................95
Appendix l.D: Ring Cavity Phase Shift..........................97
Appendix l.E: Magnetron Cavity...................................98
Chapter 2 Recent Advances in Atomic Physics That Have Impact
on Atomic Frequency Standards Development......................101
2.1 Solid-State Diode Laser.................................102
2.1.1 Basic Principle of Operation of a Laser Diode...102
2.1.2 Basic Characteristics of the Semiconductor
Laser Diode.....................................105
2.1.3 Types of Laser Diodes...........................106
2.1.4 Other Types of Lasers Used in Special Situations.108
2.2 Control of Wavelength and Spectral Width
of Laser Diodes........................................109
2.2.1 Line Width Reduction............................109
2.2.1.1 Simple Optical Feedback................109
2.2.1.2 Extended Cavity Approach...............109
2.2.1.3 Feedback from High-Q Optical Cavities... 112
2.2.1.4 Electrical Feedback....................112
2.2.1.5 Other Approaches.......................112
2.2.1.6 Locking the Laser to an Ultra-Stable
Cavity.................................113
2.2.2 Laser Frequency Stabilization Using an Atomic
Resonance Line..................................116
2.2.2.1 Locking the Laser Frequency to Linear
Optical Absorption.....................116
2.2.2.2 Locking the Laser Frequency
to Saturated Absorption................117
2.3 Laser Optical Pumping...................................119
2.3.1 Rate Equations..................................120
2.3.2 Field Equation and Coherence....................122
2.4 Coherent Population Trapping............................127
2.4.1 Physics of the CPT Phenomenon...................129
2.4.2 Basic Equations............................... 131
2.5 Laser Cooling of Atoms..................................136
2.5.1 Atom-Radiation Interaction......................138
2.5.1.1 Effect of a Photon on Atom External
Properties: Semi-Classical Approach....138
2.5.1.2 Quantum Mechanical Approach............143
2.5.2 Effect of Fluctuations in Laser Cooling
and Its Limit...................................158
2.5.3 Cooling below Doppler Limit: Sisyphus Cooling.... 160
2.5.3.1 Physics of Sisyphus Cooling.......... 160
2.5.3.2 Capture Velocity.......................164
Contents viî
2.5.3.3 Friction Coefficient..................165
2.5.3.4 Cooling Limit Temperature.............166
2.5.3.5 Recoil Limit..........................166
2.5.3.6 Sub-Recoil Cooling....................167
2.5.4 Magneto-Optical Trap......................... 167
2.5.5 Other Experimental Techniques in Laser
Cooling and Trapping...........................170
2.5.5.1 Laser Atom-Slowing Using a Frequency Swept Laser System:
Chirp Laser Slowing...................171
2.5.5.2 Laser Atom-Slowing Using Zeeman
Effect: Zeeman Slower.................173
2.5.5.3 2D Magneto-Optical Trap...............177
2.5.5.4 Isotropic Cooling.....................180
2.5.5.5 Optical Lattice Approach..............183
Appendix 2.A: Laser Cooling—Energy Considerations...........189
Chapter 3 Microwave Frequency Standards Using New Physics................191
3.1 Cs Beam Frequency Standard............................192
3.1.1 Optically Pumped Cs Beam Frequency Standard.... 192
3.1.1.1 General Description...................192
3.1.1.2 Frequency Shifts and Accuracy.........194
3.1.1.3 Experimental Determination
of Those Shifts.......................197
3.1.1.4 Frequency Stability...................198
3.1.1.5 Field Application.....................200
3.1.2 CPT Approach in a Beam.........................200
3.1.2.1 General Description...................200
3.1.2.2 Analysis..............................201
3.1.2.3 Experimental Results..................206
3.1.3 Classical Cs Beam Standard Using Beam
Cooling........................................208
3.2 Atomic Fountain Approach..............................210
3.2.1 In Search of a Solution........................210
3.2.2 General Description of the Cs Fountain.........211
3.2.3 Functioning of the Cs Fountain.................213
3.2.3.1 Formation of the Cooled Atomic
Cloud: Zone A....................... 213
3.2.3.2 Preparation of the Atoms: Zone B......217
3.2.3.3 Interrogation Region: Zone C..........218
3.2.3.4 Free Motion: Zone D...................218
3.2.3.5 Detection Region: Zone E..............218
3.2.4 Physical Construction of the Cs Fountain.......219
3.2.4.1 Vacuum Chamber........................219
3.2.4.2 Microwave Cavity......................220
Contents
• •• VIII
3.2.4.3 Magnetic Field..........................221
3.2.4.4 Temperature Control.....................221
3.2.4.5 Capture and Selection Zone..............221
3.2.4.6 Detection Zone..........................221
3.2.4.7 Supporting Systems......................221
3.2.4.8 Advantages and Disadvantages
of a Pulsed Fountain................. 222
3.2.5 Frequency Stability of the Cs Fountain..........223
3.2.5.1 Photon Shot Noise..................... 224
3.2.5.2 Quantum Projection Noise................225
3.2.5.3 Electronic Noise........................225
3.2.5.4 Reference Oscillator Noise: Dicke Effect... 225
3.2.6 Rubidium and Dual Species Fountain Clock........226
3.2.7 Frequency Shifts and Biases Present in the
Fountain...................................... 229
3.2.7.1 Second-Order Zeeman Shift...............230
3.2.7.2 Black Body Radiation Shift..............232
3.2.7.3 Collision Shift.........................237
3.2.7.4 Cavity Phase Shift......................240
3.2.7.5 Cavity Pulling..........................242
3.2.7.6 Microwave Spectral Purity...............247
3.2.7.7 Microwave Leakage.......................247
3.2.7.8 Relativistic Effects....................248
3.2.7.9 Other Shifts............................249
3.2.7.10 Conclusion on Frequency Shifts
and Accuracy...........................250
3.2.8 An Alternative Cold Caesium Frequency
Standard: The Continuous Fountain...............251
3.2.8.1 Light Trap..............................252
3.2.8.2 Interrogation Zone, Microwave Cavity...253
3.2.8.3 Preliminary Results.....................255
3.2.9 Cold Atom PHARAO Cs Space Clock............... 257
3.3 Isotropic Cooling Approach.............................258
3.3.1 External Cavity Approach: CHARLI................258
3.3.2 Approach Integrating Reflecting Sphere
and Microwave Cavity: HORACE....................260
3.3.3 Different HORACE Approach.......................261
3.4 Room Temperature Rb Standard Approach Using Laser
Optical Pumping........................................262
3.4.1 Contrast, Line Width, and Light Shift...........263
3.4.2 Effect of Laser Radiation Beam Shape............272
3.4.3 Expectations Relative to Short-Term Frequency
Stability.......................................273
3.4.4 Review of Experimental Results on Signal Size,
Line Width, and Frequency Stability.............273
Contents ix
3.4.5 Frequency Shifts...............................278
3.4.5.1 Buffer Gas Shift.......................278
3.4.5.2 Magnetic Field Shift...................279
3.4.5.3 Light Shift............................279
3.4.5.4 Spin-Exchange Frequency Shift..........284
3.4.5.5 Microwave Power Shift..................285
3.4.5.6 Cavity Pulling.........................286
3.4.6 Impact of Laser Noise and Instability on Clock
Frequency Stability............................287
3.4.6.1 Spectral Width, Phase Noise, and
Intensity Noise of Laser Diodes.......288
3.4.6.2 Impact of Laser Noise on Clock
Short-Term Frequency Stability........290
3.4.6.3 Medium- and Long-Term Frequency
Stability.............................295
3.4.7 Other Approaches Using Laser Optical Pumping
with a Sealed Cell.............................297
3.4.7.1 Maser Approach.........................297
3.4.7.2 Laser Pulsing Approach.................297
3.4.7.3 Wall-Coated Cell Approach..............299
3.5 CPT Approach...........................................300
3.5.1 Sealed Cell with a Buffer Gas in Continuous
Mode: Passive Frequency Standard...............300
3.5.1.1 Signal Amplitude and Line Width........302
3.5.1.2 Practical Implementation and Its
Characteristics.......................307
3.5.2 Active Approach in a Cell: The CPT Maser.......315
3.5.2.1 Basic CPT Maser Theory.................315
3.5.2.2 Frequency Stability....................318
3.5.2.3 Frequency Shifts.......................320
3.5.3 Techniques for Improving S/N Ratio in the
Passive IOP and CPT Clock Approach.............322
3.5.4 CPT in Laser-Cooled Ensemble for Realizing a
Frequency Standard.............................323
3.6 Laser-Cooled Microwave Ion Clocks......................324
3.6.1 9Be+ 303 MHz Radio-Frequency Standard..........325
3.6.2 mCd+ and mCd+ Ion Trap.........................327
3.6.3 171Yb+ Laser-Cooled Microwave Frequency
Standard...................................... 328
Appendix 3.A: Frequency Stability of an Atomic Fountain.....329
3.A. 1 Shot Noise.....................................333
3.A.2 Quantum Projection Noise.......................334
Appendix 3.B: Cold Collisions and Scattering Length..........337
Appendix 3.C: Optical Absorption of Polarized Laser Radiation
Including Optical Pumping....................................338
Appendix 3.D: Basic CPT Maser Theory.........................341
X
Contents
Chapter 4 Optical Frequency Standards......................................345
4.1 Early Approach Using Absorption Cells..................347
4.2 Some Basic Ideas.........................................349
4.3 MOT Approach.............................................351
4.4 Single Ion Optical Clocks................................352
4.4.1 The Concept......................................352
4.4.2 Outline of Particular Implementations with
Individual Ions..................................357
4.4.2.1 27A1+ (7=5/2)...........................357
4.4.2.2 40Ca+ (7 = 0) and 43Ca+ (/ = 7/2).......359
4.4.2.3 87Sr+ (/ = 9/2) and 88Sr+ (7=0).........361
4.4.2.4 115In+ (7=9/2)..........................362
4.4.2.5 137Ba+ (7 = 3/2) and 138Ba+ (7 = 0).....363
4.4.2.6 171Yb+ (7 = 1/2), l72Yb+ (7 = 0),
and 173Yb+ (7 = 5/2)....................364
4.4.2.7 198Hg+ (7 = 0) and 199Hg+ (7 = 1/2).....366
4.4.3 Systematic Frequency Shifts in Single Ion Clocks....366
4.4.3.1 Doppler Effect..........................366
4.4.3.2 Zeeman Effect...........................368
4.4.3.3 Biases due to the Presence of Electric
Fields..................................371
4.5 Optical Lattice Neutral Atoms Clock......................377
4.5.1 The Concept......................................377
4.5.1.1 Trapping Characteristics................382
4.5.1.2 Atom Recoil.............................383
4.5.1.3 Atom Localization.......................383
4.5.1.4 Magic Wavelength...................... 384
4.5.1.5 Clock Transition........................385
4.5.2 Type of Atoms Used in Optical Lattice Clocks.....386
4.5.2.1 Strontium Atom..........................386
4.5.2.2 Mercury Atom ...........................387
4.5.2.3 Ytterbium Atom..........................389
4.5.2.4 Magnesium Atom..........................390
4.5.2.5 Calcium Atom............................391
4.5.3 Important Frequency Biases.......................391
4.5.3.1 Zeeman Effect...........................391
4.5.3.2 BBR Shift...............................392
4.5.3.3 Lattice Light Shift.....................393
4.53.4 Other Shifts............................394
4.5.4 Frequency Stability of an Optical Lattice Clock..395
4.5.5 Practical Realizations...........................395
4.6 Frequency Measurement of Optical Clocks..................397
4.6.1 Optical Comb.....................................398
4.6.2 Clock Frequencies and Frequency Stabilities Realized
399
xi
401
402
404
405
407
407
408
409
410
410
410
410
411
412
415
457
Summary, Conclusion, and Reflections....................
5.1 Accuracy and Frequency Stability..................
5.2 Selected Applications of Atomic Frequency Standards
5.2.1 The SI: Towards a Redefinition of the Second.
5.2.2 Tests of Fundamental Physical Laws.........
5.2.2.1 Fundamental Constants.............
5.2.2.2 Time Dilation and Gravitational
Red Shift........................
5.2.2.3 Fundamental Physics in Space......
5.2.3 Clocks for Astronomy and Earth Science.....
5.2.3.1 VLBI and Geodesy..................
5.2.3.2 Deep Space Network................
5.2.3.3 Earth Clocks Network..............
5.2.3.4 Navigation Systems................
5.3 Last Reflections..................................
|
any_adam_object | 1 |
author | Vanier, Jacques Tomescu, Cipriana |
author_facet | Vanier, Jacques Tomescu, Cipriana |
author_role | aut aut |
author_sort | Vanier, Jacques |
author_variant | j v jv c t ct |
building | Verbundindex |
bvnumber | BV042882444 |
classification_rvk | UK 1250 |
ctrlnum | (OCoLC)936553368 (DE-599)GBV832578665 |
discipline | Physik |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01838nam a2200397 c 4500</leader><controlfield tag="001">BV042882444</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20160520 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">150922s2016 a||| |||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781466576957</subfield><subfield code="9">978-1-4665-7695-7</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">1466576952</subfield><subfield code="c">hardback</subfield><subfield code="9">1-4665-7695-2</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)936553368</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)GBV832578665</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-703</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">UK 1250</subfield><subfield code="0">(DE-625)145793:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Vanier, Jacques</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">The quantum physics of atomic frequency standards</subfield><subfield code="b">recent developments</subfield><subfield code="c">Jacques Vanier, Cipriana Tomescu</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Boca Raton</subfield><subfield code="b">CRC Press</subfield><subfield code="c">[2016]</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">XX, 466 Seiten</subfield><subfield code="b">Illustrationen</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Eigenfrequenz</subfield><subfield code="0">(DE-588)4135597-0</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Atomuhr</subfield><subfield code="0">(DE-588)4259141-7</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Quantenmechanik</subfield><subfield code="0">(DE-588)4047989-4</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Atomuhr</subfield><subfield code="0">(DE-588)4259141-7</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Eigenfrequenz</subfield><subfield code="0">(DE-588)4135597-0</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="2"><subfield code="a">Quantenmechanik</subfield><subfield code="0">(DE-588)4047989-4</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Tomescu, Cipriana</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">Digitalisierung UB Bayreuth - ADAM Catalogue Enrichment</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=028311249&sequence=000003&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Klappentext</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">Digitalisierung UB Bayreuth - ADAM Catalogue Enrichment</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=028311249&sequence=000004&line_number=0002&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-028311249</subfield></datafield></record></collection> |
id | DE-604.BV042882444 |
illustrated | Illustrated |
indexdate | 2024-07-10T07:12:00Z |
institution | BVB |
isbn | 9781466576957 1466576952 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-028311249 |
oclc_num | 936553368 |
open_access_boolean | |
owner | DE-703 |
owner_facet | DE-703 |
physical | XX, 466 Seiten Illustrationen |
publishDate | 2016 |
publishDateSearch | 2016 |
publishDateSort | 2016 |
publisher | CRC Press |
record_format | marc |
spelling | Vanier, Jacques Verfasser aut The quantum physics of atomic frequency standards recent developments Jacques Vanier, Cipriana Tomescu Boca Raton CRC Press [2016] XX, 466 Seiten Illustrationen txt rdacontent n rdamedia nc rdacarrier Eigenfrequenz (DE-588)4135597-0 gnd rswk-swf Atomuhr (DE-588)4259141-7 gnd rswk-swf Quantenmechanik (DE-588)4047989-4 gnd rswk-swf Atomuhr (DE-588)4259141-7 s Eigenfrequenz (DE-588)4135597-0 s Quantenmechanik (DE-588)4047989-4 s DE-604 Tomescu, Cipriana Verfasser aut Digitalisierung UB Bayreuth - ADAM Catalogue Enrichment application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=028311249&sequence=000003&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Klappentext Digitalisierung UB Bayreuth - ADAM Catalogue Enrichment application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=028311249&sequence=000004&line_number=0002&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis |
spellingShingle | Vanier, Jacques Tomescu, Cipriana The quantum physics of atomic frequency standards recent developments Eigenfrequenz (DE-588)4135597-0 gnd Atomuhr (DE-588)4259141-7 gnd Quantenmechanik (DE-588)4047989-4 gnd |
subject_GND | (DE-588)4135597-0 (DE-588)4259141-7 (DE-588)4047989-4 |
title | The quantum physics of atomic frequency standards recent developments |
title_auth | The quantum physics of atomic frequency standards recent developments |
title_exact_search | The quantum physics of atomic frequency standards recent developments |
title_full | The quantum physics of atomic frequency standards recent developments Jacques Vanier, Cipriana Tomescu |
title_fullStr | The quantum physics of atomic frequency standards recent developments Jacques Vanier, Cipriana Tomescu |
title_full_unstemmed | The quantum physics of atomic frequency standards recent developments Jacques Vanier, Cipriana Tomescu |
title_short | The quantum physics of atomic frequency standards |
title_sort | the quantum physics of atomic frequency standards recent developments |
title_sub | recent developments |
topic | Eigenfrequenz (DE-588)4135597-0 gnd Atomuhr (DE-588)4259141-7 gnd Quantenmechanik (DE-588)4047989-4 gnd |
topic_facet | Eigenfrequenz Atomuhr Quantenmechanik |
url | http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=028311249&sequence=000003&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=028311249&sequence=000004&line_number=0002&func_code=DB_RECORDS&service_type=MEDIA |
work_keys_str_mv | AT vanierjacques thequantumphysicsofatomicfrequencystandardsrecentdevelopments AT tomescucipriana thequantumphysicsofatomicfrequencystandardsrecentdevelopments |