Introduction to uncertainty quantification:
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
Cham
Springer
[2015]
|
Schriftenreihe: | Texts in applied mathematics
volume 63 |
Schlagworte: | |
Online-Zugang: | Inhaltsverzeichnis |
Beschreibung: | xii, 342 Seiten Diagramme |
ISBN: | 9783319233949 |
Internformat
MARC
LEADER | 00000nam a2200000 cb4500 | ||
---|---|---|---|
001 | BV042875550 | ||
003 | DE-604 | ||
005 | 20200217 | ||
007 | t | ||
008 | 150917s2015 |||| |||| 00||| eng d | ||
020 | |a 9783319233949 |c Festeinband |9 978-3-319-23394-9 | ||
035 | |a (OCoLC)936901765 | ||
035 | |a (DE-599)BVBBV042875550 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
049 | |a DE-824 |a DE-20 |a DE-703 |a DE-188 |a DE-83 |a DE-29T |a DE-634 |a DE-11 |a DE-739 | ||
084 | |a SK 950 |0 (DE-625)143273: |2 rvk | ||
084 | |a SK 970 |0 (DE-625)143276: |2 rvk | ||
084 | |a SK 830 |0 (DE-625)143259: |2 rvk | ||
084 | |a 60G60 |2 msc | ||
100 | 1 | |a Sullivan, T. J. |d 1982- |e Verfasser |0 (DE-588)1081048786 |4 aut | |
245 | 1 | 0 | |a Introduction to uncertainty quantification |c T.J. Sullivan |
264 | 1 | |a Cham |b Springer |c [2015] | |
264 | 4 | |c © 2015 | |
300 | |a xii, 342 Seiten |b Diagramme | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
490 | 1 | |a Texts in applied mathematics |v volume 63 | |
650 | 0 | 7 | |a Mathematische Methode |0 (DE-588)4155620-3 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Unsicheres Schließen |0 (DE-588)4361044-4 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Unsicheres Schließen |0 (DE-588)4361044-4 |D s |
689 | 0 | 1 | |a Mathematische Methode |0 (DE-588)4155620-3 |D s |
689 | 0 | |5 DE-604 | |
776 | 0 | 8 | |i Erscheint auch als |n Online-Ausgabe |o 10.1007/978-3-319-23395-6 |
776 | 0 | 8 | |i Erscheint auch als |n Online-Ausgabe |z 978-3-319-23395-6 |
830 | 0 | |a Texts in applied mathematics |v volume 63 |w (DE-604)BV002476038 |9 63 | |
856 | 4 | 2 | |m Digitalisierung UB Passau - ADAM Catalogue Enrichment |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=028304574&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
999 | |a oai:aleph.bib-bvb.de:BVB01-028304574 |
Datensatz im Suchindex
_version_ | 1804175159437819904 |
---|---|
adam_text | Contents 1 Introduction................................................................................................. 1.1 1.2 1.3 1.4 2 3 Measure and Probability Theory .................................................... 2.1 Measure and Probability Spaces.................................................. 2.2 Random Variables and Stochastic Processes............................. 2.3 Lebesgue Integration...................................................................... 2.4 Decomposition and Total Variation of Signed Measures......... 2.5 The Radon-Nikodým Theorem and Densities......................... 2.6 Product Measures and Independence......................................... 2.7 Gaussian Measures ....................................................................... 2.8 Interpretations of Probability..................................................... 2.9 Bibliography................................................................................... 2.10 Exercises......................................................................................... Banach and Hilbert Spaces................................................................. 3.1 Basic Definitions and Properties................................................. 3.2 Banach and Hilbert Spaces ......................................................... 3.3 3.4 3.5 3.6 3.7 4 What is Uncertainty Quantification?......................................... Mathematical Prerequisites......................................................... Outline of the
Book....................................................................... The Road Not Taken ................................................................... Dual Spaces and Adjoints ........................................................... Orthogonality and Direct Sums ................................................. Tensor Products............................................................................. Bibliography................................................................................... Exercises......................................................................................... Optimization Theory.............................................................................. 4.1 4.2 4.3 Optimization Problems and Terminology................................. Unconstrained Global Optimization........................................... Constrained Optimization........................................................... 1 1 6 7 8 9 9 14 15 19 20 21 23 29 31 32 35 35 39 43 45 50 52 52 55 55 57 60 ix
Contents x Convex Optimization................................................................... Linear Programming..................................................................... Least Squares................................................................................. Bibliography................................................................................... Exercises......................................................................................... 63 68 69 73 74 Measures ofinformation and Uncertainty.................................. 75 75 76 78 81 87 87 4.4 4.5 4.6 4.7 4.8 5 5.1 5.2 5.3 5.4 5.5 5.6 The Existence of Uncertainty....................................................... Interval Estimates........................................................................... Variance, Information and Entropy............................................. Information Gain, Distances and Divergences........................... Bibliography..................................................................................... Exercises........................................................................................... 6 Bayesian Inverse Problems ................................................................ 91 6.1 Inverse Problems and Regularization........................................... 92 6.2 Bayesian Inversion in Banach Spaces........................................... 98 6.3 Well-Posedness and Approximation............................................... 101 6.4 Accessing the Bayesian Posterior Measure................................... 105
6.5 Frequentisi Consistency of Bayesian Methods............................. 107 6.6 Bibliography....................................................................................... 110 6.7 Exercises............................................................................................. 112 7 Filtering and Data Assimilation ........................................................ 113 7.1 State Estimation in Discrete Time................................................. 114 7.2 Linear Kálmán Filter....................................................................... 117 7.3 Extended Kálmán Filter................................................................... 125 7.4 Ensemble Kálmán Filter................................................................... 126 7.5 Bibliography....................................................................................... 128 7.6 Exercises............................................................................................. 129 8 Orthogonal Polynomials and Applications ...................................133 Basic Definitions and Properties.....................................................134 8.1 8.2 8.3 8.4 8.5 8.6 8.7 8.8 8.9 8.10 Recurrence Relations ....................................................................... 140 Differential Equations....................................................................... 143 Roots of Orthogonal Polynomials................................................... 145 Polynomial Interpolation................................................................. 147 Polynomial
Approximation............................................................. 151 Multivariate Orthogonal Polynomials........................................... 154 Bibliography....................................................................................... 158 Exercises............................................................................................. 158 Tables of Classical Orthogonal Polynomials................................. 161
Contents xi 9 Numerical Integration....................................................................... 165 9.1 Univariate Quadrature.................................................................... 166 9.2 Gaussian Quadrature...................................................................... 169 9.3 Clenshaw-Curtis/Fejér Quadrature.............................................. 173 9.4 Multivariate Quadrature ................................................................ 175 9.5 Monte Carlo Methods...................................................................... 178 9.6 Pseudo-Random Methods .............................................................. 186 9.7 Bibliography...................................................................................... 192 9.8 Exercises............................................................................................ 194 10 Sensitivity Analysis and Model Reduction............................... 197 10.1 Model Reduction for Linear Models.............................................. 198 10.2 Derivatives........................................................................................ 201 10.3 McDiarmid Diameters...................................................................... 206 10.4 ANOVA/HDMR Decompositions.................................................. 210 10.5 Active Subspaces.............................................................................. 213 10.6 Bibliography...................................................................................... 218 10.7
Exercises............................................................................................ 219 11 Spectral Expansions ........................................................................... 223 11.1 Karhunen-Loève Expansions.......................................................... 223 11.2 Wiener-Hermite Polynomial Chaos.............................................. 234 11.3 Generalized Polynomial Chaos Expansions.................................. 237 11.4 Wavelet Expansions.......................................................................... 243 11.5 Bibliography...................................................................................... 247 11.6 Exercises............................................................................................ 248 12 Stochastic Galerkin Methods......................................................... 251 12.1 Weak Formulation of Nonlinearities .............................................. 252 12.2 Random Ordinary Differential Equations.................................... 257 12.3 Lax-Milgram Theory and Random PDEs.................................... 262 12.4 Bibliography...................................................................................... 273 !2.5 Exercises............................................................................................ 273 13 Non-Intrusive Methods..................................................................... 277 13.1 Non-Intrusive Spectral Methods.................................................... 278 13.2 Stochastic Collocation
.................................................................... 282 13.3 Gaussian Process Regression.......................................................... 288 13.4 Bibliography...................................................................................... 292 13.5 Exercises............................................................................................ 292 14 Distributional Uncertainty................................................................295 14.1 Maximum Entropy Distributions.................................................. 296 14.2 Hierarchical Methods...................................................................... 299 14.3 Distributional Robustness .............................................................. 299 14.4 Functional and Distributional Robustness .................................. 311
xii Contents 14.5 Bibliography...................................................................................... 315 14.6 Exercises............................................................................................ 316 References........................................................................................................ 319 Index.................................................................................................................. 339
|
any_adam_object | 1 |
author | Sullivan, T. J. 1982- |
author_GND | (DE-588)1081048786 |
author_facet | Sullivan, T. J. 1982- |
author_role | aut |
author_sort | Sullivan, T. J. 1982- |
author_variant | t j s tj tjs |
building | Verbundindex |
bvnumber | BV042875550 |
classification_rvk | SK 950 SK 970 SK 830 |
ctrlnum | (OCoLC)936901765 (DE-599)BVBBV042875550 |
discipline | Mathematik |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01850nam a2200433 cb4500</leader><controlfield tag="001">BV042875550</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20200217 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">150917s2015 |||| |||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783319233949</subfield><subfield code="c">Festeinband</subfield><subfield code="9">978-3-319-23394-9</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)936901765</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV042875550</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-824</subfield><subfield code="a">DE-20</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-188</subfield><subfield code="a">DE-83</subfield><subfield code="a">DE-29T</subfield><subfield code="a">DE-634</subfield><subfield code="a">DE-11</subfield><subfield code="a">DE-739</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 950</subfield><subfield code="0">(DE-625)143273:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 970</subfield><subfield code="0">(DE-625)143276:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 830</subfield><subfield code="0">(DE-625)143259:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">60G60</subfield><subfield code="2">msc</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Sullivan, T. J.</subfield><subfield code="d">1982-</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)1081048786</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Introduction to uncertainty quantification</subfield><subfield code="c">T.J. Sullivan</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Cham</subfield><subfield code="b">Springer</subfield><subfield code="c">[2015]</subfield></datafield><datafield tag="264" ind1=" " ind2="4"><subfield code="c">© 2015</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">xii, 342 Seiten</subfield><subfield code="b">Diagramme</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Texts in applied mathematics</subfield><subfield code="v">volume 63</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Mathematische Methode</subfield><subfield code="0">(DE-588)4155620-3</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Unsicheres Schließen</subfield><subfield code="0">(DE-588)4361044-4</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Unsicheres Schließen</subfield><subfield code="0">(DE-588)4361044-4</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Mathematische Methode</subfield><subfield code="0">(DE-588)4155620-3</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Online-Ausgabe</subfield><subfield code="o">10.1007/978-3-319-23395-6</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Online-Ausgabe</subfield><subfield code="z">978-3-319-23395-6</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">Texts in applied mathematics</subfield><subfield code="v">volume 63</subfield><subfield code="w">(DE-604)BV002476038</subfield><subfield code="9">63</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">Digitalisierung UB Passau - ADAM Catalogue Enrichment</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=028304574&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-028304574</subfield></datafield></record></collection> |
id | DE-604.BV042875550 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T07:11:51Z |
institution | BVB |
isbn | 9783319233949 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-028304574 |
oclc_num | 936901765 |
open_access_boolean | |
owner | DE-824 DE-20 DE-703 DE-188 DE-83 DE-29T DE-634 DE-11 DE-739 |
owner_facet | DE-824 DE-20 DE-703 DE-188 DE-83 DE-29T DE-634 DE-11 DE-739 |
physical | xii, 342 Seiten Diagramme |
publishDate | 2015 |
publishDateSearch | 2015 |
publishDateSort | 2015 |
publisher | Springer |
record_format | marc |
series | Texts in applied mathematics |
series2 | Texts in applied mathematics |
spelling | Sullivan, T. J. 1982- Verfasser (DE-588)1081048786 aut Introduction to uncertainty quantification T.J. Sullivan Cham Springer [2015] © 2015 xii, 342 Seiten Diagramme txt rdacontent n rdamedia nc rdacarrier Texts in applied mathematics volume 63 Mathematische Methode (DE-588)4155620-3 gnd rswk-swf Unsicheres Schließen (DE-588)4361044-4 gnd rswk-swf Unsicheres Schließen (DE-588)4361044-4 s Mathematische Methode (DE-588)4155620-3 s DE-604 Erscheint auch als Online-Ausgabe 10.1007/978-3-319-23395-6 Erscheint auch als Online-Ausgabe 978-3-319-23395-6 Texts in applied mathematics volume 63 (DE-604)BV002476038 63 Digitalisierung UB Passau - ADAM Catalogue Enrichment application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=028304574&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis |
spellingShingle | Sullivan, T. J. 1982- Introduction to uncertainty quantification Texts in applied mathematics Mathematische Methode (DE-588)4155620-3 gnd Unsicheres Schließen (DE-588)4361044-4 gnd |
subject_GND | (DE-588)4155620-3 (DE-588)4361044-4 |
title | Introduction to uncertainty quantification |
title_auth | Introduction to uncertainty quantification |
title_exact_search | Introduction to uncertainty quantification |
title_full | Introduction to uncertainty quantification T.J. Sullivan |
title_fullStr | Introduction to uncertainty quantification T.J. Sullivan |
title_full_unstemmed | Introduction to uncertainty quantification T.J. Sullivan |
title_short | Introduction to uncertainty quantification |
title_sort | introduction to uncertainty quantification |
topic | Mathematische Methode (DE-588)4155620-3 gnd Unsicheres Schließen (DE-588)4361044-4 gnd |
topic_facet | Mathematische Methode Unsicheres Schließen |
url | http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=028304574&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
volume_link | (DE-604)BV002476038 |
work_keys_str_mv | AT sullivantj introductiontouncertaintyquantification |