Stochastic population and epidemic models: persistence and extinction
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Cham [u.a.]
Springer
2015
|
Schriftenreihe: | Mathematical Biosciences Institute Lecture Series
1,3 |
Schlagworte: | |
Online-Zugang: | BTU01 FRO01 TUM01 UBM01 UBT01 UBW01 UPA01 Volltext Inhaltsverzeichnis Abstract |
Beschreibung: | 1 Online-Ressource (X, 47 S.) 12 illus. in color |
ISBN: | 9783319215549 |
DOI: | 10.1007/978-3-319-21554-9 |
Internformat
MARC
LEADER | 00000nmm a2200000zcb4500 | ||
---|---|---|---|
001 | BV042788302 | ||
003 | DE-604 | ||
005 | 20200930 | ||
007 | cr|uuu---uuuuu | ||
008 | 150901s2015 |||| o||u| ||||||eng d | ||
020 | |a 9783319215549 |c Online |9 978-3-319-21554-9 | ||
024 | 7 | |a 10.1007/978-3-319-21554-9 |2 doi | |
035 | |a (OCoLC)920940127 | ||
035 | |a (DE-599)BVBBV042788302 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-91 |a DE-19 |a DE-703 |a DE-20 |a DE-739 |a DE-634 |a DE-861 |a DE-83 | ||
082 | 0 | |a 519.2 |2 23 | |
084 | |a MAT 000 |2 stub | ||
100 | 1 | |a Allen, Linda J. S. |e Verfasser |0 (DE-588)103159891X |4 aut | |
245 | 1 | 0 | |a Stochastic population and epidemic models |b persistence and extinction |c Linda J. S. Allen |
264 | 1 | |a Cham [u.a.] |b Springer |c 2015 | |
300 | |a 1 Online-Ressource (X, 47 S.) |b 12 illus. in color | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 1 | |a Mathematical Biosciences Institute lecture series |v 1,3 | |
650 | 4 | |a Mathematics | |
650 | 4 | |a Ecology | |
650 | 4 | |a Genetics / Mathematics | |
650 | 4 | |a Distribution (Probability theory) | |
650 | 4 | |a Probability Theory and Stochastic Processes | |
650 | 4 | |a Genetics and Population Dynamics | |
650 | 4 | |a Theoretical Ecology/Statistics | |
650 | 4 | |a Mathematik | |
650 | 4 | |a Ökologie | |
776 | 0 | 8 | |i Erscheint auch als |n Druckausgabe |z 978-3-319-21553-2 |
830 | 0 | |a Mathematical Biosciences Institute Lecture Series |v 1,3 |w (DE-604)BV042604489 |9 1,3 | |
856 | 4 | 0 | |u https://doi.org/10.1007/978-3-319-21554-9 |x Verlag |3 Volltext |
856 | 4 | 2 | |m Springer Fremddatenuebernahme |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=028218180&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
856 | 4 | 2 | |m Springer Fremddatenuebernahme |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=028218180&sequence=000003&line_number=0002&func_code=DB_RECORDS&service_type=MEDIA |3 Abstract |
912 | |a ZDB-2-SMA | ||
940 | 1 | |q UBY_PDA_SMA | |
940 | 1 | |q ZDB-2-SMA_2015 | |
999 | |a oai:aleph.bib-bvb.de:BVB01-028218180 | ||
966 | e | |u https://doi.org/10.1007/978-3-319-21554-9 |l BTU01 |p ZDB-2-SMA |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1007/978-3-319-21554-9 |l FRO01 |p ZDB-2-SMA |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1007/978-3-319-21554-9 |l TUM01 |p ZDB-2-SMA |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1007/978-3-319-21554-9 |l UBM01 |p ZDB-2-SMA |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1007/978-3-319-21554-9 |l UBT01 |p ZDB-2-SMA |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1007/978-3-319-21554-9 |l UBW01 |p ZDB-2-SMA |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1007/978-3-319-21554-9 |l UPA01 |p ZDB-2-SMA |x Verlag |3 Volltext |
Datensatz im Suchindex
_version_ | 1804175020883181568 |
---|---|
adam_text | STOCHASTIC POPULATION AND EPIDEMIC MODELS
/ ALLEN, LINDA J. S.
: 2015
TABLE OF CONTENTS / INHALTSVERZEICHNIS
CONTINUOUS-TIME AND DISCRETE-STATE BRANCHING PROCESSES
APPLICATIONS OF SINGLE-TYPE BRANCHING PROCESSES
APPLICATIONS OF MULTI-TYPE BRANCHING PROCESSES
CONTINUOUS-TIME AND CONTINUOUS-STATE BRANCHING PROCESSES.-MATLAB
PROGRAMS
DIESES SCHRIFTSTUECK WURDE MASCHINELL ERZEUGT.
STOCHASTIC POPULATION AND EPIDEMIC MODELS
/ ALLEN, LINDA J. S.
: 2015
ABSTRACT / INHALTSTEXT
THIS MONOGRAPH PROVIDES A SUMMARY OF THE BASIC THEORY OF BRANCHING
PROCESSES FOR SINGLE-TYPE AND MULTI-TYPE PROCESSES. CLASSIC EXAMPLES OF
POPULATION AND EPIDEMIC MODELS ILLUSTRATE THE PROBABILITY OF POPULATION
OR EPIDEMIC EXTINCTION OBTAINED FROM THE THEORY OF BRANCHING PROCESSES.
THE FIRST CHAPTER DEVELOPS THE BRANCHING PROCESS THEORY, WHILE IN THE
SECOND CHAPTER TWO APPLICATIONS TO POPULATION AND EPIDEMIC PROCESSES OF
SINGLE-TYPE BRANCHING PROCESS THEORY ARE EXPLORED. THE LAST TWO CHAPTERS
PRESENT MULTI-TYPE BRANCHING PROCESS APPLICATIONS TO EPIDEMIC MODELS,
AND THEN CONTINUOUS-TIME AND CONTINUOUS-STATE BRANCHING PROCESSES WITH
APPLICATIONS. IN ADDITION, SEVERAL MATLAB PROGRAMS FOR SIMULATING
STOCHASTIC SAMPLE PATHS ARE PROVIDED IN AN APPENDIX. THESE NOTES
ORIGINATED AS PART OF A LECTURE SERIES ON STOCHASTICS IN BIOLOGICAL
SYSTEMS AT THE MATHEMATICAL BIOSCIENCES INSTITUTE IN OHIO, USA.
PROFESSOR LINDA ALLEN IS A PAUL WHITFIELD HORN PROFESSOR OF MATHEMATICS
IN THE DEPARTMENT OF MATHEMATICS AND STATISTICS AT TEXAS TECH
UNIVERSITY, USA.
DIESES SCHRIFTSTUECK WURDE MASCHINELL ERZEUGT.
|
any_adam_object | 1 |
author | Allen, Linda J. S. |
author_GND | (DE-588)103159891X |
author_facet | Allen, Linda J. S. |
author_role | aut |
author_sort | Allen, Linda J. S. |
author_variant | l j s a ljs ljsa |
building | Verbundindex |
bvnumber | BV042788302 |
classification_tum | MAT 000 |
collection | ZDB-2-SMA |
ctrlnum | (OCoLC)920940127 (DE-599)BVBBV042788302 |
dewey-full | 519.2 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 519 - Probabilities and applied mathematics |
dewey-raw | 519.2 |
dewey-search | 519.2 |
dewey-sort | 3519.2 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
doi_str_mv | 10.1007/978-3-319-21554-9 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02876nmm a2200589zcb4500</leader><controlfield tag="001">BV042788302</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20200930 </controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">150901s2015 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783319215549</subfield><subfield code="c">Online</subfield><subfield code="9">978-3-319-21554-9</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/978-3-319-21554-9</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)920940127</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV042788302</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-91</subfield><subfield code="a">DE-19</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-20</subfield><subfield code="a">DE-739</subfield><subfield code="a">DE-634</subfield><subfield code="a">DE-861</subfield><subfield code="a">DE-83</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">519.2</subfield><subfield code="2">23</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 000</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Allen, Linda J. S.</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)103159891X</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Stochastic population and epidemic models</subfield><subfield code="b">persistence and extinction</subfield><subfield code="c">Linda J. S. Allen</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Cham [u.a.]</subfield><subfield code="b">Springer</subfield><subfield code="c">2015</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (X, 47 S.)</subfield><subfield code="b">12 illus. in color</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Mathematical Biosciences Institute lecture series</subfield><subfield code="v">1,3</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Ecology</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Genetics / Mathematics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Distribution (Probability theory)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Probability Theory and Stochastic Processes</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Genetics and Population Dynamics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Theoretical Ecology/Statistics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematik</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Ökologie</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druckausgabe</subfield><subfield code="z">978-3-319-21553-2</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">Mathematical Biosciences Institute Lecture Series</subfield><subfield code="v">1,3</subfield><subfield code="w">(DE-604)BV042604489</subfield><subfield code="9">1,3</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1007/978-3-319-21554-9</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">Springer Fremddatenuebernahme</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=028218180&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">Springer Fremddatenuebernahme</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=028218180&sequence=000003&line_number=0002&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Abstract</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-2-SMA</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">UBY_PDA_SMA</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">ZDB-2-SMA_2015</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-028218180</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-3-319-21554-9</subfield><subfield code="l">BTU01</subfield><subfield code="p">ZDB-2-SMA</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-3-319-21554-9</subfield><subfield code="l">FRO01</subfield><subfield code="p">ZDB-2-SMA</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-3-319-21554-9</subfield><subfield code="l">TUM01</subfield><subfield code="p">ZDB-2-SMA</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-3-319-21554-9</subfield><subfield code="l">UBM01</subfield><subfield code="p">ZDB-2-SMA</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-3-319-21554-9</subfield><subfield code="l">UBT01</subfield><subfield code="p">ZDB-2-SMA</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-3-319-21554-9</subfield><subfield code="l">UBW01</subfield><subfield code="p">ZDB-2-SMA</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-3-319-21554-9</subfield><subfield code="l">UPA01</subfield><subfield code="p">ZDB-2-SMA</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV042788302 |
illustrated | Illustrated |
indexdate | 2024-07-10T07:09:39Z |
institution | BVB |
isbn | 9783319215549 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-028218180 |
oclc_num | 920940127 |
open_access_boolean | |
owner | DE-91 DE-BY-TUM DE-19 DE-BY-UBM DE-703 DE-20 DE-739 DE-634 DE-861 DE-83 |
owner_facet | DE-91 DE-BY-TUM DE-19 DE-BY-UBM DE-703 DE-20 DE-739 DE-634 DE-861 DE-83 |
physical | 1 Online-Ressource (X, 47 S.) 12 illus. in color |
psigel | ZDB-2-SMA UBY_PDA_SMA ZDB-2-SMA_2015 |
publishDate | 2015 |
publishDateSearch | 2015 |
publishDateSort | 2015 |
publisher | Springer |
record_format | marc |
series | Mathematical Biosciences Institute Lecture Series |
series2 | Mathematical Biosciences Institute lecture series |
spelling | Allen, Linda J. S. Verfasser (DE-588)103159891X aut Stochastic population and epidemic models persistence and extinction Linda J. S. Allen Cham [u.a.] Springer 2015 1 Online-Ressource (X, 47 S.) 12 illus. in color txt rdacontent c rdamedia cr rdacarrier Mathematical Biosciences Institute lecture series 1,3 Mathematics Ecology Genetics / Mathematics Distribution (Probability theory) Probability Theory and Stochastic Processes Genetics and Population Dynamics Theoretical Ecology/Statistics Mathematik Ökologie Erscheint auch als Druckausgabe 978-3-319-21553-2 Mathematical Biosciences Institute Lecture Series 1,3 (DE-604)BV042604489 1,3 https://doi.org/10.1007/978-3-319-21554-9 Verlag Volltext Springer Fremddatenuebernahme application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=028218180&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis Springer Fremddatenuebernahme application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=028218180&sequence=000003&line_number=0002&func_code=DB_RECORDS&service_type=MEDIA Abstract |
spellingShingle | Allen, Linda J. S. Stochastic population and epidemic models persistence and extinction Mathematical Biosciences Institute Lecture Series Mathematics Ecology Genetics / Mathematics Distribution (Probability theory) Probability Theory and Stochastic Processes Genetics and Population Dynamics Theoretical Ecology/Statistics Mathematik Ökologie |
title | Stochastic population and epidemic models persistence and extinction |
title_auth | Stochastic population and epidemic models persistence and extinction |
title_exact_search | Stochastic population and epidemic models persistence and extinction |
title_full | Stochastic population and epidemic models persistence and extinction Linda J. S. Allen |
title_fullStr | Stochastic population and epidemic models persistence and extinction Linda J. S. Allen |
title_full_unstemmed | Stochastic population and epidemic models persistence and extinction Linda J. S. Allen |
title_short | Stochastic population and epidemic models |
title_sort | stochastic population and epidemic models persistence and extinction |
title_sub | persistence and extinction |
topic | Mathematics Ecology Genetics / Mathematics Distribution (Probability theory) Probability Theory and Stochastic Processes Genetics and Population Dynamics Theoretical Ecology/Statistics Mathematik Ökologie |
topic_facet | Mathematics Ecology Genetics / Mathematics Distribution (Probability theory) Probability Theory and Stochastic Processes Genetics and Population Dynamics Theoretical Ecology/Statistics Mathematik Ökologie |
url | https://doi.org/10.1007/978-3-319-21554-9 http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=028218180&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=028218180&sequence=000003&line_number=0002&func_code=DB_RECORDS&service_type=MEDIA |
volume_link | (DE-604)BV042604489 |
work_keys_str_mv | AT allenlindajs stochasticpopulationandepidemicmodelspersistenceandextinction |