Aerogels handbook:
Gespeichert in:
Späterer Titel: | Aegerter, Michel A. Springer Handbook of Aerogels |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
New York, NY [u.a.]
Springer
2011
|
Schriftenreihe: | Advances in sol-gel derived materials and technologies
|
Schlagworte: | |
Online-Zugang: | Inhaltstext Inhaltsverzeichnis Inhaltsverzeichnis |
Beschreibung: | XXXI, 932 S. Ill., graph. Darst. 260 mm x 193 mm |
ISBN: | 9781441974778 |
Internformat
MARC
LEADER | 00000nam a2200000 c 4500 | ||
---|---|---|---|
001 | BV042757177 | ||
003 | DE-604 | ||
005 | 20220919 | ||
007 | t | ||
008 | 150813s2011 ad|| |||| 00||| eng d | ||
010 | |a 2011921715 | ||
015 | |a 10N29 |2 dnb | ||
016 | 7 | |a 1004450370 |2 DE-101 | |
020 | |a 9781441974778 |c Print |9 978-1-4419-7477-8 | ||
035 | |a (OCoLC)740892064 | ||
035 | |a (DE-599)DNB1004450370 | ||
040 | |a DE-604 |b ger |e rakddb | ||
041 | 0 | |a eng | |
049 | |a DE-29T |a DE-20 | ||
084 | |a VE 8000 |0 (DE-625)147145:253 |2 rvk | ||
245 | 1 | 0 | |a Aerogels handbook |c ed.-in-chief Michel A. Aegerter. Ed. Nicholas Leventis ; Matthias M. Koebel. [ISGS, International Sol-Gel Society] |
264 | 1 | |a New York, NY [u.a.] |b Springer |c 2011 | |
300 | |a XXXI, 932 S. |b Ill., graph. Darst. |c 260 mm x 193 mm | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
490 | 0 | |a Advances in sol-gel derived materials and technologies | |
650 | 0 | 7 | |a Aerogel |0 (DE-588)4124525-8 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Aerogel |0 (DE-588)4124525-8 |D s |
689 | 0 | |5 DE-604 | |
700 | 1 | |a Aegerter, Michel A. |e Sonstige |4 oth | |
700 | 1 | |a Leventis, Nicholas |e Sonstige |4 oth | |
700 | 1 | |a Koebel, Matthias M. |e Sonstige |4 oth | |
710 | 2 | |a International Sol-Gel Society |e Sonstige |0 (DE-588)6072967-3 |4 oth | |
776 | 0 | 8 | |i Erscheint auch als |n Online-Ausgabe |z 978-1-441-97589-8 |
785 | 0 | 0 | |i Gefolgt von |a Aegerter, Michel A. |t Springer Handbook of Aerogels |n 2023 |z 978-3-030-27321-7 |
856 | 4 | |q text/html |u http://deposit.dnb.de/cgi-bin/dokserv?id=3513995&prov=M&dok_var=1&dok_ext=htm |3 Inhaltstext | |
856 | 4 | |m DE-601 |q pdf/application |u http://www.gbv.de/dms/tib-ub-hannover/631565124.pdf |3 Inhaltsverzeichnis | |
856 | 4 | 2 | |m SWB Datenaustausch |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=028187779&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
943 | 1 | |a oai:aleph.bib-bvb.de:BVB01-028187779 |
Datensatz im Suchindex
_version_ | 1806332135320059904 |
---|---|
adam_text |
CONTENTS
PREFACE
.
V
LIST OF CONTRIBUTORS
. XXVII
PART I HISTORY OF AEROGELS
1 HISTORY OF AEROGELS
. 3
ALAIN C. PIERRE
1.1. THE FOUNDING STUDIES BY
KISTLER. 3
1.2. FURTHER STUDIES ON THE SYNTHESIS CHEMISTRY OF
AEROGELS. 6
1.3. TECHNICAL CHARACTERIZATION OF AEROGELS AND DEVELOPMENT
OF THEIR
APPLICATIONS. 8
1.4. RECENT AEROGEL DEVELOPMENTS
. 11
ACKNOWLEDGMENTS
. 12
REFERENCES.
12
PART II MATERIALS AND PROCESSING: INORGANIC * SILICA BASED AEROGELS
2 SIO
2
AEROGELS
. 21
ALAIN C. PIERRE AND ARNAUD RIGACCI
2.1. ELABORATION .
. 21
2.1.1. SOL*GEL SYNTHESIS
. 21
2.1.2. AGEING
. 24
2.1.3. DRYING
. 25
2.1.4. SYNTHESIS
FLEXIBILITY. 28
2.2. MAIN PROPERTIES AND APPLICATIONS OF SILICA AEROGELS
. 29
2.2.1. TEXTURE
. 29
2.2.2. CHEMICAL CHARACTERISTICS
. 33
2.2.3. PHYSICAL PROPERTIES AND SOME RELATED APPLICATIONS .
34
2.3.
CONCLUSION.
38
ACKNOWLEDGMENTS
. 38
REFERENCES.
39
IX
3 HYDROPHOBIC SILICA AEROGELS: REVIEW OF SYNTHESIS,
PROPERTIES AND APPLICATIONS
. 47
ANN M. ANDERSON AND MARY K. CARROLL
3.1.
INTRODUCTION.
47
3.2. AEROGEL FABRICATION TECHNIQUES
. 48
3.2.1. FORMING THE WET SOL GEL
. 48
3.2.2. DRYING THE WET GEL . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . 50
3.3. HYDROPHOBIC
AEROGELS. 57
3.3.1. WHAT MAKES AN AEROGEL HYDROPHOBIC?. 57
3.3.2. HOW DO WE MEASURE HYDROPHOBICITY? . 60
3.4. A REVIEW OF THE
LITERATURE. 63
3.4.1. REVIEW OF CO-PRECURSOR METHODS .
68
3.4.2. REVIEW OF SILYLATION METHODS
. 69
3.4.3. EFFECT OF DRYING METHOD ON HYDROPHOBICITY .
70
3.5. APPLICATIONS
. 71
3.5.1. ENVIRONMENTAL CLEAN-UP AND PROTECTION .
71
3.5.2. BIOLOGICAL APPLICATIONS
. 72
3.5.3. SUPERHYDROPHOBIC SURFACES
. 73
3.6.
CONCLUSION.
73
ACKNOWLEDGMENTS
. 73
REFERENCES.
74
4 SUPERHYDROPHOBIC AND FLEXIBLE AEROGELS
. 79
A. VENKATESWARA RAO, G. M. PAJONK, DIGAMBAR Y. NADARGI, AND MATTHIAS M.
KOEBEL
4.1.
INTRODUCTION.
79
4.2. SYNTHESIS AND
CHARACTERIZATION. 80
4.2.1. SOL*GEL SYNTHESIS AND SUPERCRITICAL DRYING
. 81
4.2.2. MATERIALS CHARACTERIZATION
. 83
4.3. WATER*SURFACE
INTERACTIONS. 85
4.3.1. WATER DROPLET SLIDING . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . 86
4.3.2. LIQUID MARBLES: SUPERHYDROPHOBIC AEROGEL-COATED
WATER DROPLETS . 88
4.4. MECHANICAL AND ELASTIC PROPERTIES
. 89
4.4.1. EFFECT OF SYNTHESIS PARAMETERS ON MATERIAL
ELASTICITY. 90
4.4.2. POTENTIAL APPLICATIONS IN MECHANICAL DAMPING .
91
4.5. HYDROCARBON SORPTION
BEHAVIOR. 94
4.5.1. UPTAKE CAPACITY
. 95
4.5.2. DESORPTION RATE
. 96
4.5.3. PROCESS REVERSIBILITY AND REUSE OF AEROGELS
. 98
4.5.4. ECONOMIC FACTORS
. 99
4.6.
SUMMARY.
99
REFERENCES.
100
5 SODIUM SILICATE BASED AEROGELS VIA AMBIENT PRESSURE DRYING
. 103
A. VENKATESWARA RAO, G. M. PAJONK, UZMA K. H. BANGI,
A. PARVATHY RAO, AND MATTHIAS M. KOEBEL
5.1.
INTRODUCTION.
103
5.1.1. SILICA AEROGELS
. 103
5.1.2. WHY USE SODIUM SILICATE?.
104
X
CONTENTS
5.1.3. THE NEED FOR AMBIENT PRESSURE DRYING .
105
5.1.4. NECESSITY OF SURFACE CHEMICAL MODIFICATION .
105
5.2. PREPARATION OF SODIUM SILICATE BASED AEROGELS VIA
AMBIENT PRESSURE
DRYING. 106
5.2.1. GEL PREPARATION BY THE SOL*GEL ROUTE.
107
5.2.2. WASHING/SOLVENT EXCHANGE/SURFACE MODIFICATION.
110
5.2.3. DRYING OF MODIFIED GELS
. 112
5.3. EFFECTS OF VARIOUS PROCESS PARAMETERS ON THE PHYSICOCHEMICAL
PROPERTIES OF THE
AEROGELS. 113
5.3.1. EFFECT OF THE SODIUM SILICATE CONCENTRATION IN THE SOL
. 113
5.3.2. EFFECT OF SOL PH
. 114
5.3.3. EFFECT OF AGING (
T
A
) AND WASHING (
T
W
) PERIODS . 116
5.3.4. EFFECT OF THE TYPE OF EXCHANGE SOLVENT USED.
118
5.3.5. EFFECT OF THE AMOUNT OF SILYLATING AGENT USED
AND THE DURATION OF THE SILYLATION TREATMENT . 119
5.3.6. EFFECT OF DRYING
TEMPERATURE. 121
5.3.7. GENERAL COMMENTS ABOUT PARAMETER OPTIMIZATIONS . 122
5.3.8. SILICA AEROGELS AS THERMAL INSULATING MATERIALS
. 122
5.4. CONCLUSIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
122
REFERENCES.
123
PART III MATERIALS AND PROCESSING: INORGANIC * NON-SILICATE AEROGELS
6 ZRO
2
AEROGELS
. 127
LASSAAD BEN HAMMOUDA, IMENE MEJRI,
MOHAMED KADRI YOUNES, AND ABDELHAMID GHORBEL
6.1. INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. 127
6.2. PREPARATION OF ZIRCONIA AEROGELS. . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . 128
6.3. IMPACT OF PREPARATION PARAMETERS ON THE TEXTURAL
AND STRUCTURAL PROPERTIES OF ZIRCONIA AEROGELS
. 129
6.3.1. INFLUENCE OF ACID CONCENTRATION
. 130
6.3.2. INFLUENCE OF HYDROLYSIS RATIO (H
2
O/ZR) . 130
6.3.3. INFLUENCE OF ZIRCONIUM PRECURSOR CONCENTRATION .
130
6.3.4. INFLUENCE OF THE SUPERCRITICAL DRYING TEMPERATURE.
130
6.3.5. ZIRCONIA AEROGELS OBTAINED BY HIGH-
OR LOW-TEMPERATURE SCD . . . . 131
6.3.6. ADVANTAGES OF ZIRCONIA AEROGELS COMPARED TO XEROGELS .
131
6.3.7. INFLUENCE OF THE GEL AGING . . .
. 132
6.4. APPLICATIONS OF ZIRCONIA AEROGELS . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . 132
6.4.1. ZIRCONIA AEROGELS AND CATALYSIS
. 132
6.4.2. ZIRCONIA AEROGELS AND CERAMICS
. 139
6.4.3. ZIRCONIA AEROGELS AND SOLID OXIDE FUEL CELLS .
140
6.5. CONCLUSION . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. 140
REFERENCES.
141
CONTENTS
XI
7 PREPARATION OF TIO
2
AEROGELS-LIKE MATERIALS UNDER
AMBIENT PRESSURE
. 145
HIROSHI HIRASHIMA
7.1. INTRODUCTION
. 145
7.2.
PRINCIPLES.
146
7.3. TEMPLATING WITH POLYMER AND SURFACTANT: METHODS
. 147
7.3.1. TEMPLATING BY THE MIXING METHOD. 147
7.3.2. TEMPLATING BY THE IMMERSION METHOD . . .
148
7.3.3. PREPARATION OF AEROGELS-LIKE MATERIALS . .
149
7.3.4. CHARACTERIZATION OF DRIED- AND ANNEALED GELS.
149
7.4. TEMPLATING WITH POLYMER AND SURFACTANT: RESULTS
. 149
7.5. CONCLUSIONS
. 152
REFERENCES.
152
8 A ROBUST APPROACH TO INORGANIC AEROGELS: THE USE
OF EPOXIDES IN SOL*GEL SYNTHESIS
. 155
THEODORE F. BAUMANN, ALEXANDER E. GASH, AND JOE H. SATCHER JR.
8.1. INTRODUCTION
. 155
8.2. MECHANISMS OF EPOXIDE-INITIATED GELATION
. 156
8.2.1. SOL FORMATION AND GELATION .
157
8.2.2. HYDROLYSIS AND CONDENSATION OF METAL IONS .
158
8.2.3. EPOXIDE-INITIATED GELATION.
159
8.3. AEROGEL MATERIALS BY EPOXIDE-INITIATED GELATION
. 164
8.3.1. METAL OXIDE AEROGELS .
165
8.3.2. MIXED METAL OXIDE AND COMPOSITE AEROGELS. 166
8.4. SUMMARY
. 168
ACKNOWLEDGMENTS
. 168
REFERENCES.
168
PART IV MATERIALS AND PROCESSING: ORGANIC * NATURAL
AND SYNTHETIC AEROGELS
9 MONOLITHS AND FIBROUS CELLULOSE AEROGELS
. 173
LORENZ RATKE
9.1. INTRODUCTION
. 173
9.2. CELLULOSE AEROGEL MONOLITHS .
. 175
9.3. CELLULOSE FILAMENTS FOR TEXTILE APPLICATIONS
. 185
9.4. CONCLUSIONS
. 188
REFERENCES.
189
10 CELLULOSIC AND POLYURETHANE AEROGELS
. 191
ARNAUD RIGACCI AND PATRICK ACHARD
10.1. INTRODUCTION
. 191
10.2. POLYURETHANE AEROGELS .
. 193
10.2.1. SYNTHESIS
. 193
10.2.2. PROCESS AND MATERIALS
. 196
10.2.3. HYBRIDS AND COMPOSITES .
201
XII
CONTENTS
10.3. CELLULOSE DERIVATIVES AEROGELS
. 202
10.3.1. SYNTHESIS
. 202
10.3.2. PROCESS AND MATERIALS
. 205
10.3.3. HYBRIDS AND COMPOSITES .
210
10.4. CONCLUSIONS
. 210
ACKNOWLEDGMENTS
. 211
REFERENCES.
212
11 RESORCINOL*FORMALDEHYDE AEROGELS
. 215
SUDHIR MULIK AND CHARIKLIA SOTIRIOU-LEVENTIS
11.1. INTRODUCTION
. 215
11.2. THE RESORCINOL*FORMALDEHYDE CHEMISTRY
. 216
11.2.1. BASE-CATALYZED GELATION.
217
11.2.2. ACID-CATALYZED GELATION.
217
11.3. RF AEROGELS PREPARED BY THE BASE-CATALYZED ROUTE
. 218
11.3.1. PROCESS OF MAKING RF AEROGEL VIA BASE-CATALYZED ROUTE . 220
11.3.2. FACTORS AFFECTING THE STRUCTURE AND THE PROPERTIES OF
RF AEROGEL PREPARED THROUGH THE BASE-CATALYZED ROUTE . . 220
11.4. RF AEROGEL PREPARED BY ACID
CATALYSIS. 223
11.5. PROPERTY COMPARISON OF BASE- VERSUS ACID-CATALYZED
RF AEROGELS
. 225
11.5.1. CHEMICAL COMPOSITION.
225
11.5.2. MORPHOLOGY .
227
11.6. ALTERNATIVE APPROACHES FOR RF
AEROGELS. 227
11.7. COMMERCIAL APPLICATIONS OF RF AEROGELS
. 230
11.8. SUMMARY
. 230
REFERENCES.
231
12 NATURAL AEROGELS WITH INTERESTING ENVIRONMENTAL FEATURES:
C-SEQUESTRATION AND PESTICIDES TRAPPING
. 235
THIERRY WOIGNIER
12.1. INTRODUCTION
. 235
12.2. EXPERIMENTAL
. 236
12.2.1. SAMPLES PREPARATION .
236
12.3.
RESULTS.
237
12.3.1. ANALOGY BETWEEN ALLOPHANE AGGREGATES
AND SYNTHETIC GELS . . . 237
12.3.2. SUPERCRITICAL DRYING.
. 239
12.3.3. PORE PROPERTIES AND FRACTAL STRUCTURE.
239
12.3.4. CARBON NITROGEN AND PESTICIDES CONTENT
IN ALLOPHANIC SOILS. . . 241
12.4. DISCUSSIONS
. 242
12.5. CONCLUSIONS
. 244
REFERENCES.
245
CONTENTS
XIII
PART V MATERIALS AND PROCESSING: COMPOSITE AEROGELS
13 POLYMER-CROSSLINKED AEROGELS
. 251
NICHOLAS LEVENTIS AND HONGBING LU
13.1. INTRODUCTION
. 251
13.2. ADDRESSING THE AEROGEL FRAGILITY BY COMPOUNDING
WITH POLYMERS
. 252
13.3. CLASSIFICATION OF POLYMER/SOL*GEL COMPOSITES
. 253
13.4. ENSURING FORMATION OF CLASS II-MODEL 2 AEROGELS
BY POLYMER CROSSLINKING OF PREFORMED 3D NETWORKS
OF
NANOPARTICLES.
256
13.4.1. CROSSLINKING THROUGH POSTGELATION
INTRODUCED MONOMERS. 257
13.4.2. IMPROVING THE PROCESSABILITY OF POLYMER-CROSSLINKED
AEROGELS BY CROSSLINKING IN ONE POT AND CROSSLINKING
IN THE GAS PHASE. 277
13.5. CONCLUSIONS
. 280
ACKNOWLEDGMENTS
. 281
REFERENCES.
282
14 INTERPENETRATING ORGANIC/INORGANIC NETWORKS
OF RESORCINOL-FORMALDEHYDE/METAL OXIDE AEROGELS
. 287
NICHOLAS LEVENTIS
14.1. INTRODUCTION
. 287
14.2. COGELATION OF
RF
AND METAL OXIDE NETWORKS: NATIVE,
CROSSLINKED (X-)
RF*MOX
AEROGELS, AND XEROGELS. 290
14.3. MATERIALS PROPERTIES OF NATIVE
RF*MOX
AEROGELS, XEROGELS,
AND
X-RF*MOX
AEROGELS . 296
14.4. REACTIONS BETWEEN
RF
AND
MOX
NANOPARTICLES. 301
14.4.1. CHEMICAL TRANSFORMATIONS .
301
14.4.2. MORPHOLOGICAL CHANGES DURING PYROLYSIS
OF THE RF*MO
X
SYSTEMS . 306
14.5. CONCLUSIONS
. 306
ACKNOWLEDGMENTS
. 310
REFERENCES.
311
15 IMPROVING ELASTIC PROPERTIES OF POLYMER-REINFORCED AEROGELS
. 315
MARY ANN B. MEADOR
15.1. INTRODUCTION
. 315
15.2. HEXYL-LINKED POLYMER-REINFORCED SILICA
AEROGELS. 318
15.2.1. DI-ISOCYANATE-REINFORCED AEROGELS .
318
15.2.2. STYRENE-REINFORCED AEROGELS .
322
15.2.3. EPOXY-REINFORCED AEROGELS FROM ETHANOL SOLVENT . . 324
15.3. ALKYL TRIALKOXYSILANE-BASED REINFORCED AEROGELS
. 327
15.4. FUTURE
DIRECTIONS. 331
15.5. CONCLUSIONS
. 332
REFERENCES.
333
XIV
CONTENTS
16 AEROGELS CONTAINING METAL, ALLOY, AND OXIDE NANOPARTICLES
EMBEDDED INTO DIELECTRIC MATRICES
. 335
ANNA CORRIAS AND MARIA FRANCESCA CASULA
16.1. INTRODUCTION
. 335
16.2. AEROGEL CONTAINING OXIDE NANOPARTICLES
. 338
16.3. AEROGELS CONTAINING METAL AND ALLOY NANOPARTICLES
. 348
16.4. CONCLUDING REMARKS
. 360
ACKNOWLEDGMENTS
. 360
REFERENCES.
360
PART VI MATERIALS AND PROCESSING: EXOTIC AEROGELS
17 CHALCOGENIDE AEROGELS
. 367
STEPHANIE L. BROCK AND HONGTAO YU
17.1. INTRODUCTION
. 367
17.2. THIOLYSIS ROUTES TO CHALCOGENIDE AEROGELS: GES
2
. 368
17.3. CLUSTER-LINKING ROUTES TO CHALCOGENIDE
AEROGELS. 369
17.3.1. AEROGELS FROM MAIN GROUP CHALCOGENIDE
CLUSTERS AND PT
2+
. 369
17.3.2. AEROGELS FROM MS
4
2
*
(M
02
MO, W) IONS
AND NI
2+
(CO
2+
) . 372
17.4. NANOPARTICLE ASSEMBLY ROUTES TO CHALCOGENIDE AEROGELS
. 372
17.4.1. CDS AEROGELS.
373
17.4.2. APPLICATION OF THE NANOPARTICLE ASSEMBLY ROUTE TO PBS,
ZNS AND CDSE: EFFECT OF OXIDANT ON CDSE GELATION. 375
17.4.3. INFLUENCE OF DENSITY AND DIMENSIONALITY
ON QUANTUM CONFINEMENT EFFECTS . 376
17.4.4. OPTIMIZING PHOTOEMISSION CHARACTERISTICS .
376
17.4.5. CONTROLLING MORPHOLOGY IN CDSE AEROGELS . 379
17.4.6. EXPANDING THE METHODOLOGY: ION EXCHANGE . 381
17.4.7. EXPANDING THE METHODOLOGY: TELLURIDES .
382
17.5. CONCLUSIONS
. 382
REFERENCES.
383
18 BIOPOLYMER-CONTAINING AEROGELS: CHITOSAN-SILICA HYBRID AEROGELS
. 385
CHUNHUA JENNIFER YAO, XIPENG LIU, AND WILLIAM M. RISEN
18.1. INTRODUCTION
. 385
18.2. SYNTHESES
. 387
18.3.
PROPERTIES.
389
18.4. CHEMICAL PROPERTIES AND NOVEL AEROGEL
MATERIALS. 391
18.4.1. IRON-CONTAINING CHITOSAN-SILICA AEROGELS.
392
18.4.2. TRANSITION METAL-CONTAINING AEROGEL CHEMISTRY . 392
18.4.3. CHEMISTRY OF GOLD-CONTAINING CHITOSAN-SILICA AEROGELS . . .
394
18.4.4. DIFFUSION CONTROL OF CHEMICAL REACTIONS IN NANODOMAINS. 398
18.4.5. ATTACHMENT OF CHITOSAN-SILICA AEROGELS TO POLYMERS
AND OTHER ENTITIES . . . .
398
18.5. CONCLUSION
. 400
REFERENCES.
400
CONTENTS
XV
19 ANISOTROPIC AEROGELS BY PHOTOLITHOGRAPHY
. 403
MASSIMO BERTINO
19.1. INTRODUCTION
. 403
19.2. GENERAL
PRINCIPLE. 404
19.3. SYNTHESIS OF NANOPARTICLES WITHIN THE MATRIX PORES
. 405
19.3.1. INFRARED LITHOGRAPHY
. 405
19.3.2. ULTRAVIOLET LITHOGRAPHY
. 407
19.3.3. X-RAY LITHOGRAPHY .
408
19.3.4. THREE-DIMENSIONAL PATTERNING .
410
19.4. ANISOTROPY BY POLYMER PHOTOCROSS-LINKING
. 411
19.5. PHYSICAL PROPERTIES
. 413
19.5.1. ABSORPTION AND EMISSION .
413
19.5.2. INDEX OF REFRACTION
. 414
19.5.3. MECHANICAL PROPERTIES .
415
19.6. CONCLUSIONS
. 416
REFERENCES.
417
20 AEROGELS SYNTHESIS BY SONOCATALYSIS:
SONOGELS
. 419
LUIS ESQUIVIAS, M. PINERO, V. MORALES-FLOREZ, AND NICOLAS DE LA ROSA-FOX
20.1. THE SONOGEL APPROACH.
. 419
20.1.1. AN INSIGHT INTO CAVITATION
. 419
20.1.2.
SONOGELS. 420
20.1.3. PROCESSING SONOGELS .
421
20.1.4. PHYSICOCHEMICAL ASPECTS OF THE HYDROLYSIS.
422
20.1.5. EXPERIMENTAL ALTERNATIVES .
424
20.1.6. SONOGEL GELATION
. 424
20.1.7. SONO-ORMOSILS .
427
20.2.
STRUCTURE.
427
20.2.1. FROM SOL TO GEL
. 427
20.2.2. DENSE INORGANIC SONO-AEROGELS .
429
20.2.3. LIGHT SONO-AEROGELS .
436
20.3. FROM GEL TO
GLASS. 437
20.4. MECHANICAL PROPERTIES .
. 440
20.5. APPLICATIONS OF SONO-AEROGELS
. 440
20.5.1. BIOMATERIALS . .
. 440
20.5.2. NANOCOMPOSITES FOR CO
2
SEQUESTRATION . 440
20.6. CONCLUSION
. 441
REFERENCES.
442
PART VII PROPERTIES
21 STRUCTURAL CHARACTERIZATION OF AEROGELS
. 449
GUDRUN REICHENAUER
21.1. INTRODUCTION
. 449
21.2. STRUCTURAL PARAMETERS AND RELATED EXPERIMENTAL TECHNIQUES
. 450
XVI
CONTENTS
21.3. MICROSCOPY
. 450
21.4. SCATTERING TECHNIQUES
. 457
21.4.1. ELASTIC SCATTERING
. 457
21.4.2. INELASTIC
SCATTERING. 468
21.5. HELIUM PYCNOMETRY
. 470
21.6. GAS SORPTION POROSIMETRY . . .
. 471
21.7. HG POROSIMETRY
. 483
21.8.
THERMOPOROMETRY.
486
21.9. OTHER CHARACTERIZATION
METHODS. 488
21.10. CONCLUSIONS
. 494
REFERENCES.
495
22 MECHANICAL CHARACTERIZATION OF AEROGELS
. 499
HONGBING LU, HUIYANG LUO, AND NICHOLAS LEVENTIS
22.1. INTRODUCTION
. 499
22.2. MECHANICAL CHARACTERIZATION METHODS
. 500
22.2.1. DSC, DMA, AND NANOINDENTATION . . 500
22.2.2. TENSION, COMPRESSION, AND LOADING*UNLOADING TESTS . 501
22.2.3. CREEP, RELAXATION, AND RECOVERY TESTS . . .
501
22.2.4. TESTING AT MODERATE TO HIGH STRAIN RATES.
502
22.2.5. ULTRASONIC ECHO TESTS .
502
22.2.6. FRACTURE AND FATIGUE TESTS. . .
. 503
22.3. MECHANICAL CHARACTERIZATION OF NATIVE AEROGELS
. 503
22.4. MECHANICAL CHARACTERIZATION OF X-AEROGELS
. 506
22.4.1. DYNAMIC MECHANICAL ANALYSIS .
508
22.4.2. FLEXURAL MODULUS AND STRENGTH.
509
22.4.3. COMPRESSION AT LOW STRAIN RATES . . .
510
22.4.4. DYNAMIC COMPRESSION.
517
22.5. CONCLUSION
. 531
REFERENCES.
532
23 THERMAL PROPERTIES OF AEROGELS
. 537
HANS-PETER EBERT
23.1. GENERAL ASPECTS OF HEAT TRANSFER IN
AEROGELS. 537
23.2. EFFECTIVE THERMAL CONDUCTIVITY OF OPTICALLY THICK
AEROGELS. 539
23.2.1. HEAT TRANSFER VIA THE SOLID BACKBONE . . .
. 539
23.2.2. HEAT TRANSFER VIA THE GASEOUS PHASE .
540
23.2.3. RADIATIVE HEAT TRANSFER .
544
23.2.4. EFFECTIVE TOTAL THERMAL CONDUCTIVITY OF AEROGELS .
546
23.3. HEAT TRANSFER PROPERTIES OF OPTICALLY THIN AEROGELS
. 555
23.4. THERMAL CONDUCTIVITY OF AEROGELS POWDERS, GRANULATES,
AND AEROGEL COMPOSITES.
557
23.5. SPECIFIC HEAT OF AEROGELS . . .
. 560
23.6. CONCLUSION
. 562
REFERENCES.
562
CONTENTS
XVII
24 SIMULATION AND MODELING OF AEROGELS USING ATOMISTIC
AND MESOSCALE METHODS
. 565
LEV D. GELB
24.1. INTRODUCTION
. 565
24.2. ATOMISTIC MODELING
. 568
24.2.1. UNDERLYING CHEMISTRY .
568
24.2.2. SIMULATIONS OF OLIGOMERIZATION AND GELATION .
570
24.3. COARSE-GRAINED SIMULATIONS
. 574
24.3.1. HARD-SPHERE AGGREGATION MODELS .
574
24.3.2. FLEXIBLE COARSE-GRAINED MODELS .
576
24.4. CONCLUSIONS AND OUTLOOK
. 578
REFERENCES.
579
PART VIII APPLICATIONS: ENERGY
25 AEROGELS AND SOL*GEL COMPOSITES AS NANOSTRUCTURED
ENERGETIC MATERIALS
. 585
ALEXANDER E. GASH, RANDALL L. SIMPSON, AND JOE H. SATCHER JR.
25.1. INTRODUCTION
. 585
25.2. ATTRIBUTES OF AEROGELS AND SOL*GEL PROCESSING
FOR NANOSTRUCTURED ENERGETIC MATERIALS
. 587
25.3. GENERAL SOL*GEL NANOSTRUCTURED ENERGETIC MATERIALS
. 587
25.3.1. INORGANIC AEROGEL MATERIALS AS NANOSTRUCTURED
ENERGETIC COMPOSITES . 588
25.3.2. AEROGEL AND SOL*GEL COMPOSITES NANOSTRUCTURED
PYROPHORIC MATERIALS . 594
25.3.3. ORGANIC AEROGEL MATERIALS AS NANOSTRUCTURED
ENERGETIC COMPOSITES . 600
25.4. SUMMARY
. 604
ACKNOWLEDGMENTS
. 604
REFERENCES.
605
26 AEROGELS FOR SUPERINSULATION: A SYNOPTIC VIEW
. 607
MATTHIAS M. KOEBEL, ARNAUD RIGACCI, AND PATRICK ACHARD
26.1. SUPERINSULATION: GLOBAL NECESSITY AND BUILDING SPECIFICITY . .
. 607
26.1.1. WHY SUPERINSULATION?.
607
26.1.2. ZOOM ON THERMAL INSULATION FOR BUILDINGS .
609
26.2. HIGH-PERFORMANCE INSULATION OR SUPERINSULATION: THE BASICS
. 610
26.2.1. RANGE OF THERMAL CONDUCTIVITY VALUES
AND THE PHYSICS OF HEAT TRANSPORT . 610
26.2.2. VACUUM INSULATION PANELS, VACUUM GLAZINGS,
AND AEROGEL GLAZINGS . 613
26.3. OVERVIEW OF THE WORLD'S INSULATION
MARKETS. 614
26.4. CURRENT STATUS OF THE SUPERINSULATING AEROGELS
AND ASSOCIATED COMPONENTS .
616
26.4.1. SUPERINSULATING SILICA AEROGELS .
616
26.4.2. SUPERINSULATING ORGANIC AEROGELS .
621
XVIII
CONTENTS
26.4.3. COMPOSITES AND HYBRIDS .
623
26.4.4. COMMERCIAL PRODUCTS .
624
26.5. APPLICATIONS FOR AEROGEL-BASED PRODUCTS
. 625
26.5.1. OFF-SHORE OIL AND GAS .
627
26.5.2. AERONAUTICS AND AEROSPACE APPLICATIONS.
627
26.5.3. HIGH TEMPERATURE. . .
. 627
26.5.4. CRYOGENIC APPLICATIONS .
627
26.5.5. APPAREL AND APPLIANCES (REFRIGERATION SYSTEMS,
OUTDOOR CLOTHING, AND SHOES) . 628
26.5.6. A CLOSER LOOK AT AEROGELS FOR BUILDING INSULATION:
STARTUP AND TESTING PHASE . 628
26.6. TOXICITY, HEALTH, AND ENVIRONMENTAL CONSIDERATIONS
. 630
26.7. CONCLUSIONS
. 630
REFERENCES.
631
PART IX APPLICATIONS: CHEMISTRY AND PHYSICS
27 AEROGELS AS PLATFORMS FOR CHEMICAL SENSORS
. 637
MARY K. CARROLL AND ANN M. ANDERSON
27.1. INTRODUCTION: WHY USE AEROGELS FOR SENSOR APPLICATIONS?
. 637
27.2. OPTICAL SENSORS BASED ON SILICA AEROGEL
PLATFORMS. 638
27.2.1. PHOTOLUMINESCENT MODIFICATION OF THE AEROGEL ITSELF .
639
27.2.2. COVALENT ATTACHMENT OF PROBE SPECIES.
640
27.2.3. ELECTROSTATIC ATTACHMENT OF PROBE SPECIES .
641
27.2.4. ENTRAPMENT OF PROBE SPECIES .
642
27.2.5. SILICA AEROGELS AS SAMPLE HOLDERS FOR RAMAN SCATTERING
MEASUREMENTS . 645
27.2.6. SILICA COMPOSITE MATERIALS .
645
27.3. CONDUCTIMETRIC SENSORS BASED ON AEROGEL
PLATFORMS. 646
27.3.1. SILICA AEROGEL PLATFORMS AS CONDUCTIMETRIC SENSORS .
646
27.3.2. CARBON-BASED AEROGEL COMPOSITES
AS CONDUCTIMETRIC SENSORS . 647
27.4. OTHER AEROGEL PLATFORMS THAT SHOW PROMISE
FOR SENSING APPLICATIONS
. 647
27.4.1. TITANIA AEROGELS AS SENSOR PLATFORMS .
647
27.4.2. CLAY AEROGELS FOR SENSING APPLICATIONS.
648
27.5. SUMMARY AND FUTURE DIRECTIONS
. 648
ACKNOWLEDGMENTS
. 649
REFERENCES.
649
28 TRANSPARENT SILICA AEROGEL BLOCKS FOR HIGH-ENERGY
PHYSICS RESEARCH
. 651
HIROSHI YOKOGAWA
28.1. INTRODUCTION
. 651
28.2. HYDROPHOBIC SILICA AEROGEL BLOCKS
. 651
28.2.1. MANUFACTURING PROCESS.
652
28.2.2. OPTICAL PROPERTIES . . .
. 653
CONTENTS
XIX
28.3. AEROGEL CHERENKOV COUNTER
. 653
28.3.1. THRESHOLD-TYPE CHERENKOV COUNTER . 655
28.3.2. RING IMAGING CHERENKOV COUNTER .
656
28.4. KEK B-FACTORY EXPERIMENT
. 657
28.4.1. OBJECTIVE
. 657
28.4.2. AEROGEL CHERENKOV COUNTER OF BELLE DETECTOR . . . .
657
28.4.3. RESULTS OF B-FACTORY
. 659
28.5. ACHIEVEMENTS OF OTHER EXPERIMENTS
. 660
28.6. SPECIFICATIONS OF "PANASONIC" SILICA AEROGELS
. 660
28.7. CONCLUSIONS
. 661
ACKNOWLEDGMENTS
. 662
REFERENCES.
662
29 SINTERING OF SILICA AEROGELS FOR GLASS SYNTHESIS:
APPLICATION TO NUCLEAR WASTE CONTAINMENT
. 665
THIERRY WOIGNIER, JEROME REYNES, AND JEAN PHALIPPOU
29.1. INTRODUCTION
. 665
29.2. GLASSES OBTAINED BY THE SOL-GEL PROCESS
. 667
29.3. PRINCIPLE OF THE CONTAINMENT PROCESS
. 668
29.4. SYNTHESIS OF SILICA AEROGEL HOST MATERIALS
. 669
29.4.1. PARTIALLY SINTERED AEROGELS
. 670
29.4.2. COMPOSITE AEROGELS.
670
29.4.3. PERMEABILITY . .
. 670
29.5. SYNTHESIS OF THE NUCLEAR GLASS
CERAMICS. 671
29.6. CHARACTERIZATION OF THE GLASS CERAMIC
. 672
29.6.1.
STRUCTURE. 672
29.6.2. AQUEOUS EROSION BEHAVIOR .
674
29.6.3. MECHANICAL PROPERTIES OF THE NUCLEAR GLASS CERAMICS. 676
29.7. CONCLUSION
. 677
REFERENCES.
678
PART X APPLICATIONS: BIOMEDICAL AND PHARMACEUTICAL
30 BIOMEDICAL APPLICATIONS OF AEROGELS
. 683
WEI YIN AND DAVID A. RUBENSTEIN
30.1. INTRODUCTION
. 683
30.2. AEROGELS USED FOR CARDIOVASCULAR IMPLANTABLE DEVICES
. 684
30.3. AEROGELS AS TISSUE ENGINEERING
SUBSTRATES. 690
30.4. AEROGELS AS DRUG DELIVERY SYSTEMS
. 692
30.5. THE FUTURE OF AEROGELS IN BIOMEDICAL APPLICATIONS
. 693
30.6. CONCLUSION
. 694
REFERENCES.
694
XX
CONTENTS
31 PHARMACEUTICAL APPLICATIONS OF AEROGELS
. 695
IRINA SMIRNOVA
31.1. INTRODUCTION
. 695
31.2. SILICA AEROGELS AS HOST MATRIX FOR DRUGS (DRUG CARRIERS)
. 696
31.2.1. LOADING OF AEROGELS BY ADSORPTION.
696
31.2.2. RELEASE OF THE DRUGS FROM SILICA AEROGELS .
699
31.3. MODIFIED SILICA AEROGELS: INFLUENCE OF FUNCTIONAL GROUPS
ON THE DRUG ADSORPTION AND RELEASE KINETICS .
701
31.3.1. ADSORPTION
. 701
31.3.2. RELEASE KINETICS
. 702
31.4. PHARMACEUTICAL FORMULATIONS WITH SILICA AEROGELS
. 704
31.4.1. SEMISOLID FORMULATIONS. .
705
31.4.2. SOLID FORMULATIONS.
706
31.5. CRYSTALLIZATION/PRECIPITATION OF DRUGS IN
AEROGELS. 708
31.6. SILICA AEROGELS AS CARRIERS FOR ENZYMES AND PROTEINS
. 710
31.7. ORGANIC AEROGELS AS DRUG DELIVERY SYSTEMS
. 711
31.7.1. DRUG RELEASE.
713
31.8. AEROGELS BASED ON BIOPOLYMERS AS DRUG
CARRIERS. 714
31.9. CONCLUSION
. 715
REFERENCES.
716
PART XI APPLICATIONS: SPACE AND AIRBORNE
32 APPLICATIONS OF AEROGELS IN SPACE EXPLORATION
. 721
STEVEN M. JONES AND JEFFREY SAKAMOTO
32.1. INTRODUCTION
. 721
32.2. HYPERVELOCITY PARTICLE
CAPTURE. 722
32.2.1. INITIAL ON ORBIT STUDIES
. 722
32.2.2. THE STARDUST MISSION .
. 722
32.2.3. THE SCIM MISSION (PROPOSED) .
727
32.2.4. NONSILICA AEROGELS.
729
32.2.5. CALORIMETRIC AEROGEL .
. 731
32.3. THERMAL
INSULATION. 732
32.3.1. 2003 MARS EXPLORATION ROVERS .
732
32.3.2. MARS SCIENCE LABORATORY .
734
32.3.3. THERMOELECTRICS .
. 735
32.3.4. ADVANCED STIRLING RADIOISOTOPE GENERATORS .
740
32.4. CRYOGENIC FLUID CONTAINMENT
. 742
32.5. CONCLUSION
. 744
ACKNOWLEDGMENTS
. 744
REFERENCES.
745
33 AIRBORNE ULTRASONIC TRANSDUCER
. 747
HIDETOMO NAGAHARA AND MASAHIKO HASHIMOTO
33.1. TRANSDUCERS FOR ULTRASONIC SENSING
. 747
33.2. ACOUSTIC PROPERTIES OF
AEROGELS. 749
CONTENTS
XXI
33.3. DESIGN OF ULTRASONIC TRANSDUCER
. 751
33.4. FABRICATION OF AEROGEL ACOUSTIC MATCHING LAYER
. 753
33.5. AEROGEL ULTRASONIC TRANSDUCER
. 755
33.6. CONCLUSION
. 760
REFERENCES.
760
PART XII APPLICATIONS: METAL INDUSTRY
34 AEROGELS FOR FOUNDRY APPLICATIONS
. 763
LORENZ RATKE AND BARBARA MILOW
34.1. GENERAL ASPECTS OF MOLD PREPARATION FOR CASTINGS
. 763
34.2. FUNCTIONAL REQUIREMENTS FOR MOLDS AND CORES
. 764
34.3. RESORCINOL*FORMALDEHYDE AEROGELS AS BINDERS
. 765
34.4. MECHANICAL PROPERTIES OF
AEROSAND. 766
34.5. DRYING OF RF AEROGEL*SAND MIXTURES
. 769
34.6. THERMAL DECOMPOSITION
. 771
34.7. GAS
PERMEABILITY.
772
34.8. CARBON AEROGELS AS BINDER MATERIALS
. 774
34.9. AEROGELS AS NANOADDITIVES FOR FOUNDRY
SANDS. 777
34.10. AEROGELS IN SOLIDIFICATION AND CASTING RESEARCH
. 779
34.10.1. FORM FILLING.
780
34.10.2. AEROGELS FOR DIRECTIONAL SOLIDIFICATION.
784
34.11. CONCLUSIONS
. 787
REFERENCES.
787
PART XIII APPLICATIONS: ART
35 AER( )SCULPTURE: A FREE-DIMENSIONAL SPACE ART
. 791
IOANNIS MICHALOUDIS
35.1. AN ARTIST VIEW OF AEROGELS
. 791
35.2. ABOUT THE ARTISTIC DEVELOPMENT AND REALIZATION
. 792
ACKNOWLEDGMENTS
. 810
REFERENCES.
810
PART XIV APPLICATIONS: OTHER
36 PREPARATION AND APPLICATION OF CARBON AEROGELS
. 813
JUN SHEN AND DAYONG Y. GUAN
36.1. INTRODUCTION
. 813
36.2. SYNTHESIS OF CARBON AEROGELS
. 815
36.2.1. SYNTHESIS OF RF AEROGELS.
815
36.2.2. PREPARATION OF CARBON AEROGELS .
816
36.3. CHARACTERIZATION OF CARBON AEROGELS
. 817
36.3.1. SCANNING ELECTRON MICROSCOPY . 817
36.3.2. NITROGEN SORPTION MEASUREMENTS . 818
36.3.3. X-RAY DIFFRACTION .
819
XXII
CONTENTS
36.4. EFFECT OF PROCESS CONTROL ON THE CARBON AEROGEL STRUCTURE
. 820
36.4.1. THE DRYING PROCESS .
. 820
36.4.2.
PYROLYSIS
(CARBONIZATION) TECHNOLOGY . 822
36.5. APPLICATIONS
. 823
36.5.1. ELECTRICAL APPLICATIONS
. 823
36.5.2. HYDROGEN STORAGE AND ADSORPTION.
824
36.5.3. CATALYST SUPPORTS. . . .
. 826
36.5.4. MATERIALS FOR THERMAL INSULATION .
826
36.5.5. OTHER APPLICATIONS . .
. 826
36.6. CONCLUSION
. 827
REFERENCES.
827
PART XV COMMERCIAL PRODUCTS
37 INSIGHTS AND ANALYSIS OF MANUFACTURING AND MARKETING
CONSUMER PRODUCTS WITH AEROGEL MATERIALS
. 835
BRUCE MCCORMICK
37.1. INTRODUCTION
. 835
37.2. INSULATING SOLUTIONS
. 835
37.2.1. CURRENT INSULATING MATERIALS
. 835
37.2.2. THE SYNTHETIC REVOLUTION .
836
37.3. MARKET OPPORTUNITIES FOR AEROGEL PRODUCTS
. 837
37.3.1. INNOVATION DIFFUSION OF AEROGEL PRODUCTS.
837
37.3.2. THE INTERNET AND AEROGEL .
839
37.3.3. PRODUCTION COSTS AND OBSTACLES .
839
37.4. "LOW HANGING FRUIT" AND AEROGEL PRODUCTS
. 840
37.4.1. WET AND UNDER PRESSURE TEST RESULTS .
841
37.4.2. AEROGEL PRODUCTS IN WAL-MART? .
842
37.4.3. CONSUMER AWARENESS OF AEROGEL .
843
37.4.4. FASHION VERSUS PERFORMANCE. .
843
37.4.5. THE COST FACTOR
. 844
37.5. SUMMARY OF COMMERCIALIZATION OF AEROGEL IN CONSUMER MARKETS . .
845
REFERENCE.
845
38 AEROGEL BY CABOT CORPORATION: VERSATILE PROPERTIES
FOR MANY APPLICATIONS
. 847
HILARY THORNE-BANDA AND TOM MILLER
38.1. INTRODUCTION
. 847
38.2. CABOT AEROGEL
. 847
38.3. HISTORY
. 848
38.3.1. TIMELINE: CABOT PIONEERS ATMOSPHERIC
AEROGEL PRODUCTION . . 848
38.4. APPLICATIONS
. 849
38.4.1. ARCHITECTURAL DAYLIGHTING
. 849
38.4.2. BUILDING INSULATION. .
. 849
38.4.3. OIL AND GAS PIPELINES
. 850
CONTENTS
XXIII
38.4.4. INDUSTRIAL AND CRYOGENIC APPLICATIONS .
850
38.4.5. OUTDOOR GEAR AND APPAREL.
851
38.4.6. SPECIALTY CHEMICALS AND COATINGS.
852
38.4.7. PERSONAL CARE.
. 852
38.5. PRODUCTS
. 853
38.5.1.
PROPERTIES. 853
38.5.2. GREEN MATERIAL
. 855
38.6. CONCLUSION
. 856
REFERENCES.
856
39 AMERICAN AEROGEL CORPORATION: ORGANIC AEROGEL COMMERCIALIZATION
. 857
ROBERT MENDENHALL
39.1. INTRODUCTION
. 857
39.2. HISTORY
. 857
39.3.
AEROCORE
DESCRIPTION: SMALL PORE AREA MATERIAL . 858
39.4. OBSERVATIONS ON
COMMERCIALIZATION. 860
39.5. CONCLUSION
. 862
REFERENCES.
863
40 AEROGELS SUPER-THERMAL INSULATION MATERIALS BY NANO HI-TECH
. 865
CHENGLI JIN
40.1. ABOUT NANO HIGH-TECH
. 865
40.1.1. CHRONOLOGY OF NANO HIGH-TECH .
866
40.2. MAIN PRODUCTS
. 867
40.2.1. FLEXIBLE THERMAL INSULATION FELT (FM) .
867
40.2.2. THERMAL INSULATION PANEL (IP) .
867
40.2.3. CYLINDERS AND SPECIAL-SHAPED PARTS
FOR THERMAL INSULATION (CS) . 869
40.2.4. DAYLIGHTING PANELS (TP) .
871
40.2.5. AEROGEL POWDERS, PARTICLES (AP) AND MONOLITHS .
872
40.3. FIELDS OF APPLICATION AND CUSTOMERS
. 874
40.4. R&D AND FUTURE APPLICATIONS
. 876
40.5. CONCLUSION
. 877
REFERENCES.
877
41 OKAGEL: HIGH INSULATING DAY LIGHTING SYSTEMS
. 879
FRANK SCHNEIDER
41.1. INTRODUCTION
. 879
41.2. INSULATING
CAPACITY. 880
41.3. TRANSLUCENT INSULATION
MATERIALS. 882
41.4. SILICA AEROGELS
. 883
41.5. MULTIFUNCTIONAL, HIGH INSULATING FAC¸ADE ELEMENTS
. 884
41.6. APPLICATIONS
. 885
41.7. CONCLUSION
. 887
REFERENCES.
887
XXIV
CONTENTS
PART XVI CONCLUSION
42 CONCLUDING REMARKS AND OUTLOOK
. 891
MICHEL A. AEGERTER, NICHOLAS LEVENTIS, AND MATTHIAS M. KOEBEL
GLOSSARY, ACRONYMS AND ABBREVIATIONS
. 893
SUBJECT INDEX
.
917
CONTENTS
XXV |
any_adam_object | 1 |
building | Verbundindex |
bvnumber | BV042757177 |
classification_rvk | VE 8000 |
ctrlnum | (OCoLC)740892064 (DE-599)DNB1004450370 |
discipline | Chemie / Pharmazie |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>00000nam a2200000 c 4500</leader><controlfield tag="001">BV042757177</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20220919</controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">150813s2011 ad|| |||| 00||| eng d</controlfield><datafield tag="010" ind1=" " ind2=" "><subfield code="a">2011921715</subfield></datafield><datafield tag="015" ind1=" " ind2=" "><subfield code="a">10N29</subfield><subfield code="2">dnb</subfield></datafield><datafield tag="016" ind1="7" ind2=" "><subfield code="a">1004450370</subfield><subfield code="2">DE-101</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781441974778</subfield><subfield code="c">Print</subfield><subfield code="9">978-1-4419-7477-8</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)740892064</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DNB1004450370</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rakddb</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-29T</subfield><subfield code="a">DE-20</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">VE 8000</subfield><subfield code="0">(DE-625)147145:253</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Aerogels handbook</subfield><subfield code="c">ed.-in-chief Michel A. Aegerter. Ed. Nicholas Leventis ; Matthias M. Koebel. [ISGS, International Sol-Gel Society]</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">New York, NY [u.a.]</subfield><subfield code="b">Springer</subfield><subfield code="c">2011</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">XXXI, 932 S.</subfield><subfield code="b">Ill., graph. Darst.</subfield><subfield code="c">260 mm x 193 mm</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Advances in sol-gel derived materials and technologies</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Aerogel</subfield><subfield code="0">(DE-588)4124525-8</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Aerogel</subfield><subfield code="0">(DE-588)4124525-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Aegerter, Michel A.</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Leventis, Nicholas</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Koebel, Matthias M.</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="710" ind1="2" ind2=" "><subfield code="a">International Sol-Gel Society</subfield><subfield code="e">Sonstige</subfield><subfield code="0">(DE-588)6072967-3</subfield><subfield code="4">oth</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Online-Ausgabe</subfield><subfield code="z">978-1-441-97589-8</subfield></datafield><datafield tag="785" ind1="0" ind2="0"><subfield code="i">Gefolgt von</subfield><subfield code="a">Aegerter, Michel A.</subfield><subfield code="t">Springer Handbook of Aerogels</subfield><subfield code="n">2023</subfield><subfield code="z">978-3-030-27321-7</subfield></datafield><datafield tag="856" ind1="4" ind2=" "><subfield code="q">text/html</subfield><subfield code="u">http://deposit.dnb.de/cgi-bin/dokserv?id=3513995&prov=M&dok_var=1&dok_ext=htm</subfield><subfield code="3">Inhaltstext</subfield></datafield><datafield tag="856" ind1="4" ind2=" "><subfield code="m">DE-601</subfield><subfield code="q">pdf/application</subfield><subfield code="u">http://www.gbv.de/dms/tib-ub-hannover/631565124.pdf</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">SWB Datenaustausch</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=028187779&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="943" ind1="1" ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-028187779</subfield></datafield></record></collection> |
id | DE-604.BV042757177 |
illustrated | Illustrated |
indexdate | 2024-08-03T02:36:04Z |
institution | BVB |
institution_GND | (DE-588)6072967-3 |
isbn | 9781441974778 |
language | English |
lccn | 2011921715 |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-028187779 |
oclc_num | 740892064 |
open_access_boolean | |
owner | DE-29T DE-20 |
owner_facet | DE-29T DE-20 |
physical | XXXI, 932 S. Ill., graph. Darst. 260 mm x 193 mm |
publishDate | 2011 |
publishDateSearch | 2011 |
publishDateSort | 2011 |
publisher | Springer |
record_format | marc |
series2 | Advances in sol-gel derived materials and technologies |
spelling | Aerogels handbook ed.-in-chief Michel A. Aegerter. Ed. Nicholas Leventis ; Matthias M. Koebel. [ISGS, International Sol-Gel Society] New York, NY [u.a.] Springer 2011 XXXI, 932 S. Ill., graph. Darst. 260 mm x 193 mm txt rdacontent n rdamedia nc rdacarrier Advances in sol-gel derived materials and technologies Aerogel (DE-588)4124525-8 gnd rswk-swf Aerogel (DE-588)4124525-8 s DE-604 Aegerter, Michel A. Sonstige oth Leventis, Nicholas Sonstige oth Koebel, Matthias M. Sonstige oth International Sol-Gel Society Sonstige (DE-588)6072967-3 oth Erscheint auch als Online-Ausgabe 978-1-441-97589-8 Gefolgt von Aegerter, Michel A. Springer Handbook of Aerogels 2023 978-3-030-27321-7 text/html http://deposit.dnb.de/cgi-bin/dokserv?id=3513995&prov=M&dok_var=1&dok_ext=htm Inhaltstext DE-601 pdf/application http://www.gbv.de/dms/tib-ub-hannover/631565124.pdf Inhaltsverzeichnis SWB Datenaustausch application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=028187779&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis |
spellingShingle | Aerogels handbook Aerogel (DE-588)4124525-8 gnd |
subject_GND | (DE-588)4124525-8 |
title | Aerogels handbook |
title_auth | Aerogels handbook |
title_exact_search | Aerogels handbook |
title_full | Aerogels handbook ed.-in-chief Michel A. Aegerter. Ed. Nicholas Leventis ; Matthias M. Koebel. [ISGS, International Sol-Gel Society] |
title_fullStr | Aerogels handbook ed.-in-chief Michel A. Aegerter. Ed. Nicholas Leventis ; Matthias M. Koebel. [ISGS, International Sol-Gel Society] |
title_full_unstemmed | Aerogels handbook ed.-in-chief Michel A. Aegerter. Ed. Nicholas Leventis ; Matthias M. Koebel. [ISGS, International Sol-Gel Society] |
title_new | Aegerter, Michel A. Springer Handbook of Aerogels |
title_short | Aerogels handbook |
title_sort | aerogels handbook |
topic | Aerogel (DE-588)4124525-8 gnd |
topic_facet | Aerogel |
url | http://deposit.dnb.de/cgi-bin/dokserv?id=3513995&prov=M&dok_var=1&dok_ext=htm http://www.gbv.de/dms/tib-ub-hannover/631565124.pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=028187779&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
work_keys_str_mv | AT aegertermichela aerogelshandbook AT leventisnicholas aerogelshandbook AT koebelmatthiasm aerogelshandbook AT internationalsolgelsociety aerogelshandbook |