Data algorithms:
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
Beijing ; Boston ; Farnham ; Sebastopol ; Tokyo
O'Reilly
July 2015
|
Ausgabe: | First edition |
Schlagworte: | |
Online-Zugang: | Inhaltsverzeichnis |
Beschreibung: | Auf dem Cover: "Data algorithms recipes for scaling up with Hadoop and Spark" Literaturverzeichnis Seite 721-723 |
Beschreibung: | xxxvii, 737 Seiten Illustrationen, Diagramme |
ISBN: | 9781491906187 |
Internformat
MARC
LEADER | 00000nam a2200000 c 4500 | ||
---|---|---|---|
001 | BV042754009 | ||
003 | DE-604 | ||
005 | 20160204 | ||
007 | t | ||
008 | 150812s2015 a||| |||| 00||| eng d | ||
020 | |a 9781491906187 |c pbk |9 978-1-4919-0618-7 | ||
035 | |a (OCoLC)922705265 | ||
035 | |a (DE-599)BVBBV042754009 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
049 | |a DE-92 |a DE-83 |a DE-29T |a DE-11 |a DE-898 |a DE-573 | ||
082 | 0 | |a 004 | |
084 | |a ST 230 |0 (DE-625)143617: |2 rvk | ||
084 | |a ST 270 |0 (DE-625)143638: |2 rvk | ||
084 | |a ST 530 |0 (DE-625)143679: |2 rvk | ||
100 | 1 | |a Parsian, Mahmoud |e Verfasser |4 aut | |
245 | 1 | 0 | |a Data algorithms |c Mahmoud Parsian |
246 | 1 | 3 | |a Data algorithms recipes for scaling up with Hadoop and Spark |
250 | |a First edition | ||
264 | 1 | |a Beijing ; Boston ; Farnham ; Sebastopol ; Tokyo |b O'Reilly |c July 2015 | |
300 | |a xxxvii, 737 Seiten |b Illustrationen, Diagramme | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
500 | |a Auf dem Cover: "Data algorithms recipes for scaling up with Hadoop and Spark" | ||
500 | |a Literaturverzeichnis Seite 721-723 | ||
630 | 0 | 4 | |a MapReduce (Computer file) |
630 | 0 | 4 | |a Apache Hadoop |
650 | 4 | |a Datenverarbeitung | |
650 | 4 | |a Electronic data processing | |
650 | 4 | |a Big data | |
650 | 0 | 7 | |a Big Data |0 (DE-588)4802620-7 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Algorithmus |0 (DE-588)4001183-5 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Hadoop |0 (DE-588)1022420135 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Datenstruktur |0 (DE-588)4011146-5 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Hadoop |0 (DE-588)1022420135 |D s |
689 | 0 | 1 | |a Big Data |0 (DE-588)4802620-7 |D s |
689 | 0 | 2 | |a Algorithmus |0 (DE-588)4001183-5 |D s |
689 | 0 | 3 | |a Datenstruktur |0 (DE-588)4011146-5 |D s |
689 | 0 | |5 DE-604 | |
856 | 4 | 2 | |m HBZ Datenaustausch |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=028184703&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
999 | |a oai:aleph.bib-bvb.de:BVB01-028184703 |
Datensatz im Suchindex
_version_ | 1804174970427801600 |
---|---|
adam_text | Titel: Data algorithms
Autor: Parsian, Mahmoud
Jahr: 2015
Table of Contents Foreword.....................................................................xix Preface...................................................................... xxi 1. Secondary Sort: Introduction..................................................1 Solutions to the Secondary Sort Problem 3 Implementation Details 3 Data Flow Using Plug-in Classes 6 MapReduce/Hadoop Solution to Secondary Sort 7 Input 7 Expected Output 7 map() Function 8 reduce() Function 8 Hadoop Implementation Classes 9 Sample Run of Hadoop Implementation 10 How to Sort in Ascending or Descending Order 12 Spark Solution to Secondary Sort 12 Time Series as Input 12 Expected Output 13 Option 1: Secondary Sorting in Memory 13 Spark Sample Run 20 Option #2: Secondary Sorting Using the Spark Framework 24 Further Reading on Secondary Sorting 25 2. Secondary Sort: A Detailed Example...........................................27 Secondary Sorting Technique 28 Complete Example of Secondary Sorting 32 Input Format 32
Output Format Composite Key Sample Run—Old Hadoop API Input Running the MapReduce Job Output Sample Run—New Hadoop API Input Running the MapReduce Job Output 33 33 36 36 37 37 37 38 38 39 ...........41 Top N, Formalized 42 MapReduce/Hadoop Implementation: Unique Keys 43 Implementation Classes in MapReduce/Hadoop 47 Top 10 Sample Run 47 Finding the Top 5 49 Finding the Bottom 10 49 Spark Implementation: Unique Keys 50 RDD Refresher 50 Spark’s Function Classes 51 Review of the Top N Pattern for Spark 52 Complete Spark Top 10 Solution 53 Sample Run: Finding the Top 10 58 Parameterizing Top N 59 Finding the Bottom N 61 Spark Implementation: Nonunique Keys 62 Complete Spark Top 10 Solution 64 Sample Run 72 Spark Top 10 Solution Using takeOrdered() 73 Complete Spark Implementation 74 Finding the Bottom N 79 Alternative to Using takeOrderedQ 80 MapReduce/Hadoop Top 10 Solution: Nonunique Keys 81 Sample Run 82 4. Left Outer Join.................................. Left Outer Join Example 85 Example Queries 87 Implementation of Left Outer Join in MapReduce 88 MapReduce Phase 1: Finding Product Locations 88 MapReduce Phase 2: Counting Unique Locations 92 vi | Table of Contents
Implementation Classes in Hadoop 93 Sample Run 93 Spark Implementation of Left Outer Join 95 Spark Program 97 Running the Spark Solution 104 Running Spark on YARN 106 Spark Implementation with leftOuterJoin() 107 Spark Program 109 Sample Run on YARN 116 5. Order Inversion........................................................... 119 Example of the Order Inversion Pattern 120 MapReduce/Hadoop Implementation of the Order Inversion Pattern 122 Custom Partitioner 123 Relative Frequency Mapper 124 Relative Frequency Reducer 126 Implementation Classes in Hadoop 127 Sample Run 127 Input 127 Running the MapReduce Job 127 Generated Output 128 6. Moving Average..................................................... 131 Example 1: Time Series Data (Stock Prices) 131 Example 2: Time Series Data (URL Visits) 132 Formal Definition 133 POJO Moving Average Solutions 134 Solution 1: Using a Queue 134 Solution 2: Using an Array 135 Testing the Moving Average 136 Sample Run 136 MapReduce/Hadoop Moving Average Solution 137 Input 137 Output 137 Option # 1: Sorting in Memory 138 Sample Run 141 Option #2: Sorting Using the MapReduce Framework 143 Sample Run 147 7. Market Basket Analysis.....................................................151 MBA Goals 151 Application Areas for MBA 153 Table of Contents | vii
Market Basket Analysis Using MapReduce Input Expected Output for Tuple2 (Order of 2) Expected Output for Tuple3 (Order of 3) Informal Mapper Formal Mapper Reducer MapReduce/Hadoop Implementation Classes Sample Run Spark Solution MapReduce Algorithm Workflow Input Spark Implementation YARN Script for Spark Creating Item Sets from Transactions 153 154 155 155 155 156 157 158 162 163 165 166 166 178 178 8. Common Friends.......................................................... 81 Input 182 POJO Common Friends Solution 182 MapReduce Algorithm 183 The MapReduce Algorithm in Action 184 Solution 1: Hadoop Implementation Using Text 187 Sample Run for Solution 1 187 Solution 2: Hadoop Implementation Using ArrayListOfLongsWritable 189 Sample Run for Solution 2 189 Spark Solution 190 Spark Program 191 Sample Run of Spark Program 197 9. Recommendation Engines Using MapReduce..................................201 Customers Who Bought This Item Also Bought 202 Input 202 Expected Output 202 MapReduce Solution 203 Frequently Bought Together 206 Input and Expected Output 207 MapReduce Solution 208 Recommend Connection 211 Input 213 Output 214 MapReduce Solution 214 Spark Implementation 216 viii I Table of Contents
Sample Run of Spark Program 222 10. Content-Based Recommendation: Movies.....................................227 Input 228 MapReduce Phase 1 229 MapReduce Phases 2 and 3 229 MapReduce Phase 2: Mapper 230 MapReduce Phase 2: Reducer 231 MapReduce Phase 3: Mapper 233 MapReduce Phase 3: Reducer 234 Similarity Measures 236 Movie Recommendation Implementation in Spark 236 High-Level Solution in Spark 237 Sample Run of Spark Program 250 11. Smarter Email Marketing with the Markov Model.............................. 257 Markov Chains in a Nutshell 258 Markov Model Using MapReduce 261 Generating Time-Ordered Transactions with MapReduce 262 Hadoop Solution 1: Time-Ordered Transactions 263 Hadoop Solution 2: Time-Ordered Transactions 264 Generating State Sequences 268 Generating a Markov State Transition Matrix with MapReduce 271 Using the Markov Model to Predict the Next Smart Email Marketing Date 274 Spark Solution 275 Input Format 275 High-Level Steps 276 Spark Program 277 Script to Run the Spark Program 286 Sample Run 287 12. K-Means Clustering........................................................289 What Is K-Means Clustering? 292 Application Areas for Clustering 292 Informal K-Means Clustering Method: Partitioning Approach 293 K-Means Distance Function 294 K-Means Clustering Formalized 295 MapReduce Solution for K-Means Clustering 295 MapReduce Solution: map() 297 MapReduce Solution: combine() 298 MapReduce Solution: reduce() 299 K-Means Implementation by Spark 300 Table of Contents | ix
302 Sample Run of Spark K-Means Implementation 13. k-Nearest Neighbors.............................. kNN Classification Distance Functions kNN Example An Informal kNN Algorithm Formal kNN Algorithm lava-like Non-MapReduce Solution for kNN kNN Implementation in Spark Formalizing kNN for the Spark Implementation Input Data Set Formats Spark Implementation YARN shell script 305 306 307 308 308 309 309 311 312 313 313 325 14. Naive Bayes.............................................................. iZI Training and Learning Examples 328 Numeric Training Data 328 Symbolic Training Data 329 Conditional Probability 331 The Naive Bayes Classifier in Depth 331 Naive Bayes Classifier Example 332 The Naive Bayes Classifier: MapReduce Solution for Symbolic Data 334 Stage 1: Building a Classifier Using Symbolic Training Data 335 Stage 2: Using the Classifier to Classify New Symbolic Data 341 The Naive Bayes Classifier: MapReduce Solution for Numeric Data 343 Naive Bayes Classifier Implementation in Spark 345 Stage 1: Building a Classifier Using Training Data 346 Stage 2: Using the Classifier to Classify New Data 355 Using Spark and Mahout 361 Apache Spark 361 Apache Mahout 362 15. Sentiment Analysis........................................................ 363 Sentiment Examples 364 Sentiment Scores: Positive or Negative 364 A Simple MapReduce Sentiment Analysis Example 365 map() Function for Sentiment Analysis 366 reduceQ Function for Sentiment Analysis 367 Sentiment Analysis in the Real World 367 x | Table of Contents
16. Finding, Counting, and Listing All Triangles in Large Graphs..................... 369 Basic Graph Concepts 370 Importance of Counting Triangles 372 MapReduce/Hadoop Solution 372 Step 1: MapReduce in Action 373 Step 2: Identify Triangles 375 Step 3: Remove Duplicate Triangles 376 Hadoop Implementation Classes 377 Sample Run 377 Spark Solution 380 High-Level Steps 380 Sample Run 387 17. K-mer Counting........................................................... 391 Input Data for K-mer Counting 392 Sample Data for K-mer Counting 392 Appl ications of K-mer Counting 392 K-mer Counting Solution in MapReduce/Hadoop 393 The map() Function 393 The reduce() Function 394 Hadoop Implementation Classes 394 K-mer Counting Solution in Spark 395 Spark Solution 396 Sample Run 405 18. DNA Sequencing.......................................................... 407 Input Data for DNA Sequencing 409 Input Data Validation 410 DNA Sequence Alignment 411 MapReduce Algorithms for DNA Sequencing 412 Step 1: Alignment 415 Step 2: Recalibration 423 Step 3: Variant Detection 428 19. Cox Regression............................................................433 The Cox Model in a Nutshell 434 Cox Regression Basic Terminology 435 Cox Regression Using R 436 Expression Data 436 Cox Regression Application 437 Cox Regression POJO Solution 437 Input for MapReduce 439 Table of Contents | xi
1 Input Format Cox Regression Using MapReduce Cox Regression Phase 1: map() Cox Regression Phase 1: reduce/) Cox Regression Phase 2: map() Sample Output Generated by Phase 1 reduce() Function Sample Output Generated by the Phase 2 map() Function Cox Regression Script for MapReduce 440 440 440 441 442 444 445 445 20. Cochran-Armitage Test for Trend.............................................447 Cochran-Armitage Algorithm 448 Application of Cochran-Armitage 454 MapReduce Solution 456 Input 456 Expected Output 457 Mapper 458 Reducer 459 MapReduce/Hadoop Implementation Classes 463 Sample Run 463 21. Allelic Frequency............................................. Basic Definitions Chromosome Bioset Allele and Allelic Frequency Source of Data for Allelic Frequency Allelic Frequency Analysis Using Fisher’s Exact Test Fishers Exact Test Formal Problem Statement MapReduce Solution for Allelic Frequency MapReduce Solution, Phase 1 Input Output/Result Phase 1 Mapper Phase 1 Reducer Sample Run of Phase 1 MapReduce/Hadoop Implementation Sample Plot of P-Values MapReduce Solution, Phase 2 Phase 2 Mapper for Bottom 100 P-Values Phase 2 Reducer for Bottom 100 P-Values Is Our Bottom 100 List a Monoid? Hadoop Implementation Classes for Bottom 100 List 465 466 466 467 467 467 469 469 471 471 472 472 473 474 475 479 481 482 482 484 485 486 xii | Table of Contents
MapReduce Solution, Phase 3 486 Phase 3 Mapper for Bottom 100 P-Values 487 Phase 3 Reducer for Bottom 100 P-Values 489 Hadoop Implementation Classes for Bottom 100 List for Each Chromosome 490 Special Handling of Chromosomes X and Y 490 22. TheT-Test................................................................ 491 Performing the T-Test on Biosets 492 MapReduce Problem Statement 495 Input 496 Expected Output 496 MapReduce Solution 496 Hadoop Implementation Classes 499 Spark Implementation 499 High-Level Steps 500 T-Test Algorithm 507 Sample Run 509 23. Pearson Correlation........................................................513 Pearson Correlation Formula 514 Pearson Correlation Example 516 Data Set for Pearson Correlation 517 POJO Solution for Pearson Correlation 517 POJO Solution Test Drive 518 MapReduce Solution for Pearson Correlation 519 map() Function for Pearson Correlation 519 reduce() Function for Pearson Correlation 520 Hadoop Implementation Classes 521 Spark Solution for Pearson Correlation 522 Input 523 Output 523 Spark Solution 524 High-Level Steps 525 Step 1: Import required classes and interfaces 527 smaller() method 528 MutableDouble class 529 toMap() method 530 toListOfStringO method 530 readBiosets() method 531 Step 2: Handle input parameters 532 Step 3: Create a Spark context object 533 Table of Contents j xiii
Step 4: Create list of input files/biomarkers 534 Step 5: Broadcast reference as global shared object 534 Step 6: Read all biomarkers from HDFS and create the first RDD 534 Step 7: Filter biomarkers by reference 535 Step 8: Create (Gene-ID, (Patient-ID, Gene-Value)) pairs 536 Step 9: Group by gene 537 Step 10: Create Cartesian product of all genes 538 Step 11: Filter redundant pairs of genes 538 Step 12: Calculate Pearson correlation and p-value 539 Pearson Correlation Wrapper Class 542 Testing the Pearson Class 543 Pearson Correlation Using R 543 YARN Script to Run Spark Program 544 Spearman Correlation Using Spark 544 Spearman Correlation Wrapper Class 544 Testing the Spearman Correlation Wrapper Class 545 24. DNA Base Count.................................. FASTA Format FASTA Format Example FASTQ Format FASTQ Format Example MapReduce Solution: FASTA Format Reading FASTA Files MapReduce FASTA Solution: map() MapReduce FASTA Solution: reduce!) Sample Run Log of sample run Generated output Custom Sorting Custom Partitioning MapReduce Solution: FASTQ Format Reading FASTQ Files MapReduce FASTQ Solution: map() MapReduce FASTQ Solution: reduce!) Hadoop Implementation Classes: FASTQ Format Sample Run Spark Solution: FASTA Format High-Level Steps Sample Run Spark Solution: FASTQ Format High-Level Steps 547 548 549 549 549 550 550 550 551 552 552 552 553 554 556 557 558 559 560 560 561 561 564 566 566 *iv I Table of Contents
Step 1: Import required classes and interfaces 567 Step 2: Handle input parameters 567 Step 3: Create a JavaPairRDD from FASTQ input 568 Step 4: Map partitions 568 Step 5: Collect all DNA base counts 569 Step 6: Emit Final Counts 570 Sample Run 570 25. RNA Sequencing.......................................................... 573 Data Size and Format 574 MapReduce Workflow 574 Input Data Validation 574 RNA Sequencing Analysis Overview 575 MapReduce Algorithms for RNA Sequencing 578 Step 1: MapReduce TopHat Mapping 579 Step 2: MapReduce Calling Cuffdiff 582 26. Gene Aggregation......................................................... 585 Input 586 Output 586 MapReduce Solutions (Filter by Individual and by Average) 587 Mapper: Filter by Individual 588 Reducer: Filter by Individual 590 Mapper: Filter by Average 590 Reducer: Filter by Average 592 Computing Gene Aggregation 592 Hadoop Implementation Classes 594 Analysis of Output 597 Gene Aggregation in Spark 600 Spark Solution: Filter by Individual 601 Sharing Data Between Cluster Nodes 601 High-Level Steps 602 Utility Functions 607 Sample Run 609 Spark Solution: Filter by Average 610 High-Level Steps 611 Utility Functions 616 Sample Run 619 27. Linear Regression......................................................... 621 Basic Definitions 622 Simple Example 622 Table of Contents | xv
Problem Statement Input Data Expected Output MapReduce Solution Using SimpleRegression Hadoop Implementation Classes MapReduce Solution Using R’s Linear Model Phase 1 Phase 2 Hadoop Implementation Using Classes 624 625 625 626 628 629 630 633 635 ............... 637 Introduction 63 7 Definition of Monoid 639 How to Form a Monoid 640 Monoidic and Non-Monoidic Examples 640 Maximum over a Set of Integers 641 Subtraction over a Set of Integers 641 Addition over a Set of Integers 641 Multiplication over a Set of Integers 641 Mean over a Set of Integers 642 Non-Commutative Example 642 Median over a Set of Integers 642 Concatenation over Lists 642 Union/Intersection over Integers 643 Functional Example 643 Matrix Example 644 MapReduce Example: Not a Monoid 644 MapReduce Example: Monoid 646 Hadoop Implementation Classes 647 Sample Run 648 View Hadoop output 650 Spark Example Using Monoids 650 High-Level Steps 652 Sample Run 656 Conclusion on Using Monoids 657 Functors and Monoids 658 The Small Files Problem.................. Solution 1: Merging Small Files Client-Side 662 Input Data 665 Solution with SmallFilesConsolidator 665 Solution Without SmallFilesConsolidator 667 xvi I Table of Contents
Solution 2: Solving the Small Files Problem with CombineFilelnputFormat 668 Custom CombineFilelnputFormat 672 Sample Run Using CustomCFIF 672 Alternative Solutions 674 30. Huge Cache for MapReduce................................................. 675 Implementation Options 676 Formalizing the Cache Problem 677 An Elegant, Scalable Solution 678 Implementing the LRUMap Cache 681 Extending the LRUMap Class 681 Testing the Custom Class 682 The MapDBEntry Class 683 Using MapDB 684 Testing MapDB: put() 686 Testing MapDB: get() 687 MapReduce Using the LRUMap Cache 687 CacheManager Definition 688 Initializing the Cache 689 Using the Cache 690 Closing the Cache 691 31. The Bloom Filter.......................................................... 693 Bloom Filter Properties 693 A Simple Bloom Filter Example 696 Bloom Filters in Guava Library 696 Using Bloom Filters in MapReduce 698 A. Bioset....................................................................699 B. Spark RDDs............................................................... 701 Bibliography.................................................................721 Index....................................................................... 725 Table of Contents | xvii
|
any_adam_object | 1 |
author | Parsian, Mahmoud |
author_facet | Parsian, Mahmoud |
author_role | aut |
author_sort | Parsian, Mahmoud |
author_variant | m p mp |
building | Verbundindex |
bvnumber | BV042754009 |
classification_rvk | ST 230 ST 270 ST 530 |
ctrlnum | (OCoLC)922705265 (DE-599)BVBBV042754009 |
dewey-full | 004 |
dewey-hundreds | 000 - Computer science, information, general works |
dewey-ones | 004 - Computer science |
dewey-raw | 004 |
dewey-search | 004 |
dewey-sort | 14 |
dewey-tens | 000 - Computer science, information, general works |
discipline | Informatik |
edition | First edition |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02080nam a2200529 c 4500</leader><controlfield tag="001">BV042754009</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20160204 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">150812s2015 a||| |||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781491906187</subfield><subfield code="c">pbk</subfield><subfield code="9">978-1-4919-0618-7</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)922705265</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV042754009</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-92</subfield><subfield code="a">DE-83</subfield><subfield code="a">DE-29T</subfield><subfield code="a">DE-11</subfield><subfield code="a">DE-898</subfield><subfield code="a">DE-573</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">004</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">ST 230</subfield><subfield code="0">(DE-625)143617:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">ST 270</subfield><subfield code="0">(DE-625)143638:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">ST 530</subfield><subfield code="0">(DE-625)143679:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Parsian, Mahmoud</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Data algorithms</subfield><subfield code="c">Mahmoud Parsian</subfield></datafield><datafield tag="246" ind1="1" ind2="3"><subfield code="a">Data algorithms recipes for scaling up with Hadoop and Spark</subfield></datafield><datafield tag="250" ind1=" " ind2=" "><subfield code="a">First edition</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Beijing ; Boston ; Farnham ; Sebastopol ; Tokyo</subfield><subfield code="b">O'Reilly</subfield><subfield code="c">July 2015</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">xxxvii, 737 Seiten</subfield><subfield code="b">Illustrationen, Diagramme</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Auf dem Cover: "Data algorithms recipes for scaling up with Hadoop and Spark"</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Literaturverzeichnis Seite 721-723</subfield></datafield><datafield tag="630" ind1="0" ind2="4"><subfield code="a">MapReduce (Computer file)</subfield></datafield><datafield tag="630" ind1="0" ind2="4"><subfield code="a">Apache Hadoop</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Datenverarbeitung</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Electronic data processing</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Big data</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Big Data</subfield><subfield code="0">(DE-588)4802620-7</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Algorithmus</subfield><subfield code="0">(DE-588)4001183-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Hadoop</subfield><subfield code="0">(DE-588)1022420135</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Datenstruktur</subfield><subfield code="0">(DE-588)4011146-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Hadoop</subfield><subfield code="0">(DE-588)1022420135</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Big Data</subfield><subfield code="0">(DE-588)4802620-7</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="2"><subfield code="a">Algorithmus</subfield><subfield code="0">(DE-588)4001183-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="3"><subfield code="a">Datenstruktur</subfield><subfield code="0">(DE-588)4011146-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">HBZ Datenaustausch</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=028184703&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-028184703</subfield></datafield></record></collection> |
id | DE-604.BV042754009 |
illustrated | Illustrated |
indexdate | 2024-07-10T07:08:51Z |
institution | BVB |
isbn | 9781491906187 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-028184703 |
oclc_num | 922705265 |
open_access_boolean | |
owner | DE-92 DE-83 DE-29T DE-11 DE-898 DE-BY-UBR DE-573 |
owner_facet | DE-92 DE-83 DE-29T DE-11 DE-898 DE-BY-UBR DE-573 |
physical | xxxvii, 737 Seiten Illustrationen, Diagramme |
publishDate | 2015 |
publishDateSearch | 2015 |
publishDateSort | 2015 |
publisher | O'Reilly |
record_format | marc |
spelling | Parsian, Mahmoud Verfasser aut Data algorithms Mahmoud Parsian Data algorithms recipes for scaling up with Hadoop and Spark First edition Beijing ; Boston ; Farnham ; Sebastopol ; Tokyo O'Reilly July 2015 xxxvii, 737 Seiten Illustrationen, Diagramme txt rdacontent n rdamedia nc rdacarrier Auf dem Cover: "Data algorithms recipes for scaling up with Hadoop and Spark" Literaturverzeichnis Seite 721-723 MapReduce (Computer file) Apache Hadoop Datenverarbeitung Electronic data processing Big data Big Data (DE-588)4802620-7 gnd rswk-swf Algorithmus (DE-588)4001183-5 gnd rswk-swf Hadoop (DE-588)1022420135 gnd rswk-swf Datenstruktur (DE-588)4011146-5 gnd rswk-swf Hadoop (DE-588)1022420135 s Big Data (DE-588)4802620-7 s Algorithmus (DE-588)4001183-5 s Datenstruktur (DE-588)4011146-5 s DE-604 HBZ Datenaustausch application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=028184703&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis |
spellingShingle | Parsian, Mahmoud Data algorithms MapReduce (Computer file) Apache Hadoop Datenverarbeitung Electronic data processing Big data Big Data (DE-588)4802620-7 gnd Algorithmus (DE-588)4001183-5 gnd Hadoop (DE-588)1022420135 gnd Datenstruktur (DE-588)4011146-5 gnd |
subject_GND | (DE-588)4802620-7 (DE-588)4001183-5 (DE-588)1022420135 (DE-588)4011146-5 |
title | Data algorithms |
title_alt | Data algorithms recipes for scaling up with Hadoop and Spark |
title_auth | Data algorithms |
title_exact_search | Data algorithms |
title_full | Data algorithms Mahmoud Parsian |
title_fullStr | Data algorithms Mahmoud Parsian |
title_full_unstemmed | Data algorithms Mahmoud Parsian |
title_short | Data algorithms |
title_sort | data algorithms |
topic | MapReduce (Computer file) Apache Hadoop Datenverarbeitung Electronic data processing Big data Big Data (DE-588)4802620-7 gnd Algorithmus (DE-588)4001183-5 gnd Hadoop (DE-588)1022420135 gnd Datenstruktur (DE-588)4011146-5 gnd |
topic_facet | MapReduce (Computer file) Apache Hadoop Datenverarbeitung Electronic data processing Big data Big Data Algorithmus Hadoop Datenstruktur |
url | http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=028184703&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
work_keys_str_mv | AT parsianmahmoud dataalgorithms AT parsianmahmoud dataalgorithmsrecipesforscalingupwithhadoopandspark |