Propensity score analysis: fundamentals and developments
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
New York ; London
The Guilford Press
[2015]
|
Schlagworte: | |
Online-Zugang: | UBG01 Volltext |
Beschreibung: | 1 Online-Ressource (xiv, 402 Seiten) |
ISBN: | 9781462519538 1462519539 9781462519491 1462519490 |
Internformat
MARC
LEADER | 00000nmm a2200000zc 4500 | ||
---|---|---|---|
001 | BV042734467 | ||
003 | DE-604 | ||
005 | 20170105 | ||
007 | cr|uuu---uuuuu | ||
008 | 150804s2015 |||| o||u| ||||||eng d | ||
020 | |a 9781462519538 |c Online |9 978-1-4625-1953-8 | ||
020 | |a 1462519539 |9 1-4625-1953-9 | ||
020 | |a 9781462519491 |9 978-1-4625-1949-1 | ||
020 | |a 1462519490 |9 1-4625-1949-0 | ||
035 | |a (OCoLC)905348747 | ||
035 | |a (DE-599)BVBBV042734467 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
049 | |a DE-91 |a DE-473 | ||
082 | 0 | |a 001.4/22 |2 23 | |
084 | |a SOZ 720f |2 stub | ||
100 | 1 | |a Pan, Wei |d 1958- |0 (DE-588)108018628X |4 edt |4 aut | |
245 | 1 | 0 | |a Propensity score analysis |b fundamentals and developments |c edited by Wei Pan, Haiyan Bai |
264 | 1 | |a New York ; London |b The Guilford Press |c [2015] | |
264 | 4 | |c © 2015 | |
300 | |a 1 Online-Ressource (xiv, 402 Seiten) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
505 | 8 | |a "This book is designed to help researchers better design and analyze observational data from quasi-experimental studies and improve the validity of research on causal claims. It provides clear guidance on the use of different propensity score analysis (PSA) methods, from the fundamentals to complex, cutting-edge techniques. Experts in the field introduce underlying concepts and current issues and review relevant software programs for PSA. The book addresses the steps in propensity score estimation, including the use of generalized boosted models, how to identify which matching methods work best with specific types of data, and the evaluation of balance results on key background covariates after matching. Also covered are applications of PSA with complex data, working with missing data, controlling for unobserved confounding, and the extension of PSA to prognostic score analysis for causal inference. User-friendly features include statistical program codes and application examples"-- | |
505 | 8 | |a "Subject Areas/Keywords: advanced quantitative methods, causal analysis, causal inferences, estimation, matching, observational data, propensity score analysis, propensity scores, PSA, quasi-experimental research, research methods, statistics DESCRIPTION This book is designed to help researchers better design and analyze observational data from quasi-experimental studies and improve the validity of research on causal claims. It provides clear guidance on the use of different propensity score analysis (PSA) methods, from the fundamentals to complex, cutting-edge techniques. Experts in the field introduce underlying concepts and current issues and review relevant software programs for PSA. The book addresses the steps in propensity score estimation, including the use of generalized boosted models, how to identify which matching methods work best with specific types of data, and the evaluation of balance results on key background covariates after matching. Also covered are applications of PSA with complex data, working with missing data, controlling for unobserved confounding, and the extension of PSA to prognostic score analysis for causal inference. User-friendly features include statistical program codes and application examples. "-- | |
505 | 8 | |a Includes bibliographical references and index | |
505 | 8 | |a Machine generated contents note: I. Fundamentals of Propensity Score Analysis -- 1. Propensity Score Analysis: Concepts and Issues, Wei Pan & Haiyan Bai -- 2. Overview of Implementing Propensity Score Analysis in Statistical Software, Megan Schuler -- II. Propensity Score Estimation, Matching, and Covariate Balance -- 3. Propensity Score Estimation with Boosted Regression, Lane F. Burgette, Daniel F. McCaffrey, & Beth Ann Griffin -- 4. Methodological Considerations in Implementing Propensity Score Matching, Haiyan Bai -- 5. Evaluating Covariate Balance, Cassandra W. Pattanayak -- III. Weighting Schemes and Other Strategies for Outcome Analysis after Matching -- 6. Propensity Score Adjustment Methods, M. H. Clark -- 7. Propensity Score Analysis with Matching Weights, Liang Li, Tom H. Greene, & Brian C. Sauer -- 8. Robust Outcome Analysis for Propensity-Matched Designs, Scott F. Kosten, Joseph W. McKean, & Bradley E. Huitema -- IV. Propensity Score Analysis on Complex Data -- 9. Latent Growth Modeling of Longitudinal Data with Propensity-Score-Matched Groups, Walter L. Leite -- 10. Propensity Score Matching on Multilevel Data, Qiu Wang -- 11. Propensity Score Analysis with Complex Survey Samples, Debbie L. Hahs-Vaughn -- V. Sensitivity Analysis and Extensions Related to Propensity Score Analysis -- 12. Missing Data in Propensity Scores, Robin Mitra -- 13. Unobserved Confounding in Propensity Score Analysis, Rolf H. H. Groenwold & Olaf H. Klungel -- 14. Propensity-Score-Based Sensitivity Analysis, Lingling Li, Changyu Shen, & Xiaochun Li -- 15. Prognostic Scores in Clustered Settings, Ben Kelcey & Christopher M. Swoboda -- Author Index -- Subject Index -- About the Editors -- Contributors | |
650 | 7 | |a PSYCHOLOGY / Statistics |2 bisacsh | |
650 | 7 | |a MEDICAL / Research |2 bisacsh | |
650 | 7 | |a EDUCATION / Statistics |2 bisacsh | |
650 | 7 | |a SOCIAL SCIENCE / Statistics |2 bisacsh | |
650 | 7 | |a REFERENCE / Questions & Answers |2 bisacsh | |
650 | 4 | |a Medizin | |
650 | 4 | |a Sozialwissenschaften | |
650 | 4 | |a Statistik | |
650 | 4 | |a Social sciences |x Statistical methods | |
650 | 0 | 7 | |a Statistik |0 (DE-588)4056995-0 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Sozialwissenschaften |0 (DE-588)4055916-6 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Sozialwissenschaften |0 (DE-588)4055916-6 |D s |
689 | 0 | 1 | |a Statistik |0 (DE-588)4056995-0 |D s |
689 | 0 | |5 DE-604 | |
856 | 4 | 0 | |u http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=916659 |x Aggregator |3 Volltext |
912 | |a ZDB-4-NLEBK |a ZDB-30-PQE | ||
940 | 1 | |q TUM_PDA_EBSCO_EDU_gekauft | |
999 | |a oai:aleph.bib-bvb.de:BVB01-028165430 | ||
966 | e | |u http://ebookcentral.proquest.com/lib/UB-Bamberg/detail.action?docID=1872280 |l UBG01 |p ZDB-30-PQE |x Aggregator |3 Volltext |
Datensatz im Suchindex
_version_ | 1804174948177018880 |
---|---|
any_adam_object | |
author | Pan, Wei 1958- |
author2 | Pan, Wei 1958- |
author2_role | edt |
author2_variant | w p wp |
author_GND | (DE-588)108018628X |
author_facet | Pan, Wei 1958- Pan, Wei 1958- |
author_role | aut |
author_sort | Pan, Wei 1958- |
author_variant | w p wp |
building | Verbundindex |
bvnumber | BV042734467 |
classification_tum | SOZ 720f |
collection | ZDB-4-NLEBK ZDB-30-PQE |
contents | "This book is designed to help researchers better design and analyze observational data from quasi-experimental studies and improve the validity of research on causal claims. It provides clear guidance on the use of different propensity score analysis (PSA) methods, from the fundamentals to complex, cutting-edge techniques. Experts in the field introduce underlying concepts and current issues and review relevant software programs for PSA. The book addresses the steps in propensity score estimation, including the use of generalized boosted models, how to identify which matching methods work best with specific types of data, and the evaluation of balance results on key background covariates after matching. Also covered are applications of PSA with complex data, working with missing data, controlling for unobserved confounding, and the extension of PSA to prognostic score analysis for causal inference. User-friendly features include statistical program codes and application examples"-- "Subject Areas/Keywords: advanced quantitative methods, causal analysis, causal inferences, estimation, matching, observational data, propensity score analysis, propensity scores, PSA, quasi-experimental research, research methods, statistics DESCRIPTION This book is designed to help researchers better design and analyze observational data from quasi-experimental studies and improve the validity of research on causal claims. It provides clear guidance on the use of different propensity score analysis (PSA) methods, from the fundamentals to complex, cutting-edge techniques. Experts in the field introduce underlying concepts and current issues and review relevant software programs for PSA. The book addresses the steps in propensity score estimation, including the use of generalized boosted models, how to identify which matching methods work best with specific types of data, and the evaluation of balance results on key background covariates after matching. Also covered are applications of PSA with complex data, working with missing data, controlling for unobserved confounding, and the extension of PSA to prognostic score analysis for causal inference. User-friendly features include statistical program codes and application examples. "-- Includes bibliographical references and index Machine generated contents note: I. Fundamentals of Propensity Score Analysis -- 1. Propensity Score Analysis: Concepts and Issues, Wei Pan & Haiyan Bai -- 2. Overview of Implementing Propensity Score Analysis in Statistical Software, Megan Schuler -- II. Propensity Score Estimation, Matching, and Covariate Balance -- 3. Propensity Score Estimation with Boosted Regression, Lane F. Burgette, Daniel F. McCaffrey, & Beth Ann Griffin -- 4. Methodological Considerations in Implementing Propensity Score Matching, Haiyan Bai -- 5. Evaluating Covariate Balance, Cassandra W. Pattanayak -- III. Weighting Schemes and Other Strategies for Outcome Analysis after Matching -- 6. Propensity Score Adjustment Methods, M. H. Clark -- 7. Propensity Score Analysis with Matching Weights, Liang Li, Tom H. Greene, & Brian C. Sauer -- 8. Robust Outcome Analysis for Propensity-Matched Designs, Scott F. Kosten, Joseph W. McKean, & Bradley E. Huitema -- IV. Propensity Score Analysis on Complex Data -- 9. Latent Growth Modeling of Longitudinal Data with Propensity-Score-Matched Groups, Walter L. Leite -- 10. Propensity Score Matching on Multilevel Data, Qiu Wang -- 11. Propensity Score Analysis with Complex Survey Samples, Debbie L. Hahs-Vaughn -- V. Sensitivity Analysis and Extensions Related to Propensity Score Analysis -- 12. Missing Data in Propensity Scores, Robin Mitra -- 13. Unobserved Confounding in Propensity Score Analysis, Rolf H. H. Groenwold & Olaf H. Klungel -- 14. Propensity-Score-Based Sensitivity Analysis, Lingling Li, Changyu Shen, & Xiaochun Li -- 15. Prognostic Scores in Clustered Settings, Ben Kelcey & Christopher M. Swoboda -- Author Index -- Subject Index -- About the Editors -- Contributors |
ctrlnum | (OCoLC)905348747 (DE-599)BVBBV042734467 |
dewey-full | 001.4/22 |
dewey-hundreds | 000 - Computer science, information, general works |
dewey-ones | 001 - Knowledge |
dewey-raw | 001.4/22 |
dewey-search | 001.4/22 |
dewey-sort | 11.4 222 |
dewey-tens | 000 - Computer science, information, general works |
discipline | Allgemeines Soziologie |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>06105nmm a2200589zc 4500</leader><controlfield tag="001">BV042734467</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20170105 </controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">150804s2015 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781462519538</subfield><subfield code="c">Online</subfield><subfield code="9">978-1-4625-1953-8</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">1462519539</subfield><subfield code="9">1-4625-1953-9</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781462519491</subfield><subfield code="9">978-1-4625-1949-1</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">1462519490</subfield><subfield code="9">1-4625-1949-0</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)905348747</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV042734467</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-91</subfield><subfield code="a">DE-473</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">001.4/22</subfield><subfield code="2">23</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SOZ 720f</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Pan, Wei</subfield><subfield code="d">1958-</subfield><subfield code="0">(DE-588)108018628X</subfield><subfield code="4">edt</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Propensity score analysis</subfield><subfield code="b">fundamentals and developments</subfield><subfield code="c">edited by Wei Pan, Haiyan Bai</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">New York ; London</subfield><subfield code="b">The Guilford Press</subfield><subfield code="c">[2015]</subfield></datafield><datafield tag="264" ind1=" " ind2="4"><subfield code="c">© 2015</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (xiv, 402 Seiten)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">"This book is designed to help researchers better design and analyze observational data from quasi-experimental studies and improve the validity of research on causal claims. It provides clear guidance on the use of different propensity score analysis (PSA) methods, from the fundamentals to complex, cutting-edge techniques. Experts in the field introduce underlying concepts and current issues and review relevant software programs for PSA. The book addresses the steps in propensity score estimation, including the use of generalized boosted models, how to identify which matching methods work best with specific types of data, and the evaluation of balance results on key background covariates after matching. Also covered are applications of PSA with complex data, working with missing data, controlling for unobserved confounding, and the extension of PSA to prognostic score analysis for causal inference. User-friendly features include statistical program codes and application examples"--</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">"Subject Areas/Keywords: advanced quantitative methods, causal analysis, causal inferences, estimation, matching, observational data, propensity score analysis, propensity scores, PSA, quasi-experimental research, research methods, statistics DESCRIPTION This book is designed to help researchers better design and analyze observational data from quasi-experimental studies and improve the validity of research on causal claims. It provides clear guidance on the use of different propensity score analysis (PSA) methods, from the fundamentals to complex, cutting-edge techniques. Experts in the field introduce underlying concepts and current issues and review relevant software programs for PSA. The book addresses the steps in propensity score estimation, including the use of generalized boosted models, how to identify which matching methods work best with specific types of data, and the evaluation of balance results on key background covariates after matching. Also covered are applications of PSA with complex data, working with missing data, controlling for unobserved confounding, and the extension of PSA to prognostic score analysis for causal inference. User-friendly features include statistical program codes and application examples. "--</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">Includes bibliographical references and index</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">Machine generated contents note: I. Fundamentals of Propensity Score Analysis -- 1. Propensity Score Analysis: Concepts and Issues, Wei Pan & Haiyan Bai -- 2. Overview of Implementing Propensity Score Analysis in Statistical Software, Megan Schuler -- II. Propensity Score Estimation, Matching, and Covariate Balance -- 3. Propensity Score Estimation with Boosted Regression, Lane F. Burgette, Daniel F. McCaffrey, & Beth Ann Griffin -- 4. Methodological Considerations in Implementing Propensity Score Matching, Haiyan Bai -- 5. Evaluating Covariate Balance, Cassandra W. Pattanayak -- III. Weighting Schemes and Other Strategies for Outcome Analysis after Matching -- 6. Propensity Score Adjustment Methods, M. H. Clark -- 7. Propensity Score Analysis with Matching Weights, Liang Li, Tom H. Greene, & Brian C. Sauer -- 8. Robust Outcome Analysis for Propensity-Matched Designs, Scott F. Kosten, Joseph W. McKean, & Bradley E. Huitema -- IV. Propensity Score Analysis on Complex Data -- 9. Latent Growth Modeling of Longitudinal Data with Propensity-Score-Matched Groups, Walter L. Leite -- 10. Propensity Score Matching on Multilevel Data, Qiu Wang -- 11. Propensity Score Analysis with Complex Survey Samples, Debbie L. Hahs-Vaughn -- V. Sensitivity Analysis and Extensions Related to Propensity Score Analysis -- 12. Missing Data in Propensity Scores, Robin Mitra -- 13. Unobserved Confounding in Propensity Score Analysis, Rolf H. H. Groenwold & Olaf H. Klungel -- 14. Propensity-Score-Based Sensitivity Analysis, Lingling Li, Changyu Shen, & Xiaochun Li -- 15. Prognostic Scores in Clustered Settings, Ben Kelcey & Christopher M. Swoboda -- Author Index -- Subject Index -- About the Editors -- Contributors</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">PSYCHOLOGY / Statistics</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">MEDICAL / Research</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">EDUCATION / Statistics</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">SOCIAL SCIENCE / Statistics</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">REFERENCE / Questions & Answers</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Medizin</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Sozialwissenschaften</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Statistik</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Social sciences</subfield><subfield code="x">Statistical methods</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Statistik</subfield><subfield code="0">(DE-588)4056995-0</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Sozialwissenschaften</subfield><subfield code="0">(DE-588)4055916-6</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Sozialwissenschaften</subfield><subfield code="0">(DE-588)4055916-6</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Statistik</subfield><subfield code="0">(DE-588)4056995-0</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=916659</subfield><subfield code="x">Aggregator</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-4-NLEBK</subfield><subfield code="a">ZDB-30-PQE</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">TUM_PDA_EBSCO_EDU_gekauft</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-028165430</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">http://ebookcentral.proquest.com/lib/UB-Bamberg/detail.action?docID=1872280</subfield><subfield code="l">UBG01</subfield><subfield code="p">ZDB-30-PQE</subfield><subfield code="x">Aggregator</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV042734467 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T07:08:30Z |
institution | BVB |
isbn | 9781462519538 1462519539 9781462519491 1462519490 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-028165430 |
oclc_num | 905348747 |
open_access_boolean | |
owner | DE-91 DE-BY-TUM DE-473 DE-BY-UBG |
owner_facet | DE-91 DE-BY-TUM DE-473 DE-BY-UBG |
physical | 1 Online-Ressource (xiv, 402 Seiten) |
psigel | ZDB-4-NLEBK ZDB-30-PQE TUM_PDA_EBSCO_EDU_gekauft |
publishDate | 2015 |
publishDateSearch | 2015 |
publishDateSort | 2015 |
publisher | The Guilford Press |
record_format | marc |
spelling | Pan, Wei 1958- (DE-588)108018628X edt aut Propensity score analysis fundamentals and developments edited by Wei Pan, Haiyan Bai New York ; London The Guilford Press [2015] © 2015 1 Online-Ressource (xiv, 402 Seiten) txt rdacontent c rdamedia cr rdacarrier "This book is designed to help researchers better design and analyze observational data from quasi-experimental studies and improve the validity of research on causal claims. It provides clear guidance on the use of different propensity score analysis (PSA) methods, from the fundamentals to complex, cutting-edge techniques. Experts in the field introduce underlying concepts and current issues and review relevant software programs for PSA. The book addresses the steps in propensity score estimation, including the use of generalized boosted models, how to identify which matching methods work best with specific types of data, and the evaluation of balance results on key background covariates after matching. Also covered are applications of PSA with complex data, working with missing data, controlling for unobserved confounding, and the extension of PSA to prognostic score analysis for causal inference. User-friendly features include statistical program codes and application examples"-- "Subject Areas/Keywords: advanced quantitative methods, causal analysis, causal inferences, estimation, matching, observational data, propensity score analysis, propensity scores, PSA, quasi-experimental research, research methods, statistics DESCRIPTION This book is designed to help researchers better design and analyze observational data from quasi-experimental studies and improve the validity of research on causal claims. It provides clear guidance on the use of different propensity score analysis (PSA) methods, from the fundamentals to complex, cutting-edge techniques. Experts in the field introduce underlying concepts and current issues and review relevant software programs for PSA. The book addresses the steps in propensity score estimation, including the use of generalized boosted models, how to identify which matching methods work best with specific types of data, and the evaluation of balance results on key background covariates after matching. Also covered are applications of PSA with complex data, working with missing data, controlling for unobserved confounding, and the extension of PSA to prognostic score analysis for causal inference. User-friendly features include statistical program codes and application examples. "-- Includes bibliographical references and index Machine generated contents note: I. Fundamentals of Propensity Score Analysis -- 1. Propensity Score Analysis: Concepts and Issues, Wei Pan & Haiyan Bai -- 2. Overview of Implementing Propensity Score Analysis in Statistical Software, Megan Schuler -- II. Propensity Score Estimation, Matching, and Covariate Balance -- 3. Propensity Score Estimation with Boosted Regression, Lane F. Burgette, Daniel F. McCaffrey, & Beth Ann Griffin -- 4. Methodological Considerations in Implementing Propensity Score Matching, Haiyan Bai -- 5. Evaluating Covariate Balance, Cassandra W. Pattanayak -- III. Weighting Schemes and Other Strategies for Outcome Analysis after Matching -- 6. Propensity Score Adjustment Methods, M. H. Clark -- 7. Propensity Score Analysis with Matching Weights, Liang Li, Tom H. Greene, & Brian C. Sauer -- 8. Robust Outcome Analysis for Propensity-Matched Designs, Scott F. Kosten, Joseph W. McKean, & Bradley E. Huitema -- IV. Propensity Score Analysis on Complex Data -- 9. Latent Growth Modeling of Longitudinal Data with Propensity-Score-Matched Groups, Walter L. Leite -- 10. Propensity Score Matching on Multilevel Data, Qiu Wang -- 11. Propensity Score Analysis with Complex Survey Samples, Debbie L. Hahs-Vaughn -- V. Sensitivity Analysis and Extensions Related to Propensity Score Analysis -- 12. Missing Data in Propensity Scores, Robin Mitra -- 13. Unobserved Confounding in Propensity Score Analysis, Rolf H. H. Groenwold & Olaf H. Klungel -- 14. Propensity-Score-Based Sensitivity Analysis, Lingling Li, Changyu Shen, & Xiaochun Li -- 15. Prognostic Scores in Clustered Settings, Ben Kelcey & Christopher M. Swoboda -- Author Index -- Subject Index -- About the Editors -- Contributors PSYCHOLOGY / Statistics bisacsh MEDICAL / Research bisacsh EDUCATION / Statistics bisacsh SOCIAL SCIENCE / Statistics bisacsh REFERENCE / Questions & Answers bisacsh Medizin Sozialwissenschaften Statistik Social sciences Statistical methods Statistik (DE-588)4056995-0 gnd rswk-swf Sozialwissenschaften (DE-588)4055916-6 gnd rswk-swf Sozialwissenschaften (DE-588)4055916-6 s Statistik (DE-588)4056995-0 s DE-604 http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=916659 Aggregator Volltext |
spellingShingle | Pan, Wei 1958- Propensity score analysis fundamentals and developments "This book is designed to help researchers better design and analyze observational data from quasi-experimental studies and improve the validity of research on causal claims. It provides clear guidance on the use of different propensity score analysis (PSA) methods, from the fundamentals to complex, cutting-edge techniques. Experts in the field introduce underlying concepts and current issues and review relevant software programs for PSA. The book addresses the steps in propensity score estimation, including the use of generalized boosted models, how to identify which matching methods work best with specific types of data, and the evaluation of balance results on key background covariates after matching. Also covered are applications of PSA with complex data, working with missing data, controlling for unobserved confounding, and the extension of PSA to prognostic score analysis for causal inference. User-friendly features include statistical program codes and application examples"-- "Subject Areas/Keywords: advanced quantitative methods, causal analysis, causal inferences, estimation, matching, observational data, propensity score analysis, propensity scores, PSA, quasi-experimental research, research methods, statistics DESCRIPTION This book is designed to help researchers better design and analyze observational data from quasi-experimental studies and improve the validity of research on causal claims. It provides clear guidance on the use of different propensity score analysis (PSA) methods, from the fundamentals to complex, cutting-edge techniques. Experts in the field introduce underlying concepts and current issues and review relevant software programs for PSA. The book addresses the steps in propensity score estimation, including the use of generalized boosted models, how to identify which matching methods work best with specific types of data, and the evaluation of balance results on key background covariates after matching. Also covered are applications of PSA with complex data, working with missing data, controlling for unobserved confounding, and the extension of PSA to prognostic score analysis for causal inference. User-friendly features include statistical program codes and application examples. "-- Includes bibliographical references and index Machine generated contents note: I. Fundamentals of Propensity Score Analysis -- 1. Propensity Score Analysis: Concepts and Issues, Wei Pan & Haiyan Bai -- 2. Overview of Implementing Propensity Score Analysis in Statistical Software, Megan Schuler -- II. Propensity Score Estimation, Matching, and Covariate Balance -- 3. Propensity Score Estimation with Boosted Regression, Lane F. Burgette, Daniel F. McCaffrey, & Beth Ann Griffin -- 4. Methodological Considerations in Implementing Propensity Score Matching, Haiyan Bai -- 5. Evaluating Covariate Balance, Cassandra W. Pattanayak -- III. Weighting Schemes and Other Strategies for Outcome Analysis after Matching -- 6. Propensity Score Adjustment Methods, M. H. Clark -- 7. Propensity Score Analysis with Matching Weights, Liang Li, Tom H. Greene, & Brian C. Sauer -- 8. Robust Outcome Analysis for Propensity-Matched Designs, Scott F. Kosten, Joseph W. McKean, & Bradley E. Huitema -- IV. Propensity Score Analysis on Complex Data -- 9. Latent Growth Modeling of Longitudinal Data with Propensity-Score-Matched Groups, Walter L. Leite -- 10. Propensity Score Matching on Multilevel Data, Qiu Wang -- 11. Propensity Score Analysis with Complex Survey Samples, Debbie L. Hahs-Vaughn -- V. Sensitivity Analysis and Extensions Related to Propensity Score Analysis -- 12. Missing Data in Propensity Scores, Robin Mitra -- 13. Unobserved Confounding in Propensity Score Analysis, Rolf H. H. Groenwold & Olaf H. Klungel -- 14. Propensity-Score-Based Sensitivity Analysis, Lingling Li, Changyu Shen, & Xiaochun Li -- 15. Prognostic Scores in Clustered Settings, Ben Kelcey & Christopher M. Swoboda -- Author Index -- Subject Index -- About the Editors -- Contributors PSYCHOLOGY / Statistics bisacsh MEDICAL / Research bisacsh EDUCATION / Statistics bisacsh SOCIAL SCIENCE / Statistics bisacsh REFERENCE / Questions & Answers bisacsh Medizin Sozialwissenschaften Statistik Social sciences Statistical methods Statistik (DE-588)4056995-0 gnd Sozialwissenschaften (DE-588)4055916-6 gnd |
subject_GND | (DE-588)4056995-0 (DE-588)4055916-6 |
title | Propensity score analysis fundamentals and developments |
title_auth | Propensity score analysis fundamentals and developments |
title_exact_search | Propensity score analysis fundamentals and developments |
title_full | Propensity score analysis fundamentals and developments edited by Wei Pan, Haiyan Bai |
title_fullStr | Propensity score analysis fundamentals and developments edited by Wei Pan, Haiyan Bai |
title_full_unstemmed | Propensity score analysis fundamentals and developments edited by Wei Pan, Haiyan Bai |
title_short | Propensity score analysis |
title_sort | propensity score analysis fundamentals and developments |
title_sub | fundamentals and developments |
topic | PSYCHOLOGY / Statistics bisacsh MEDICAL / Research bisacsh EDUCATION / Statistics bisacsh SOCIAL SCIENCE / Statistics bisacsh REFERENCE / Questions & Answers bisacsh Medizin Sozialwissenschaften Statistik Social sciences Statistical methods Statistik (DE-588)4056995-0 gnd Sozialwissenschaften (DE-588)4055916-6 gnd |
topic_facet | PSYCHOLOGY / Statistics MEDICAL / Research EDUCATION / Statistics SOCIAL SCIENCE / Statistics REFERENCE / Questions & Answers Medizin Sozialwissenschaften Statistik Social sciences Statistical methods |
url | http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=916659 |
work_keys_str_mv | AT panwei propensityscoreanalysisfundamentalsanddevelopments |