Minimum action curves in degenerate Finsler metrics: existence and properties
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Cham [u.a.]
Springer
2015
|
Schriftenreihe: | Lecture Notes in Mathematics
2134 |
Schlagworte: | |
Online-Zugang: | Volltext Abstract |
Beschreibung: | 1 Online-Ressource (XV, 186 S.) 14 illus., 11 illus. in color |
ISBN: | 9783319177533 9783319177526 |
ISSN: | 0075-8434 |
DOI: | 10.1007/978-3-319-17753-3 |
Internformat
MARC
LEADER | 00000nmm a2200000zcb4500 | ||
---|---|---|---|
001 | BV042730351 | ||
003 | DE-604 | ||
005 | 20200929 | ||
007 | cr|uuu---uuuuu | ||
008 | 150803s2015 |||| o||u| ||||||eng d | ||
020 | |a 9783319177533 |c Online |9 978-3-319-17753-3 | ||
020 | |a 9783319177526 |c Print |9 978-3-319-17752-6 | ||
024 | 7 | |a 10.1007/978-3-319-17753-3 |2 doi | |
035 | |a (OCoLC)915768195 | ||
035 | |a (DE-599)BVBBV042730351 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-91 |a DE-19 |a DE-384 |a DE-703 |a DE-20 |a DE-739 |a DE-634 |a DE-824 |a DE-861 |a DE-83 | ||
082 | 0 | |a 519.2 |2 23 | |
084 | |a MAT 000 |2 stub | ||
100 | 1 | |a Heymann, Matthias |d 1977- |e Verfasser |0 (DE-588)1075862248 |4 aut | |
245 | 1 | 0 | |a Minimum action curves in degenerate Finsler metrics |b existence and properties |c Matthias Heymann |
264 | 1 | |a Cham [u.a.] |b Springer |c 2015 | |
300 | |a 1 Online-Ressource (XV, 186 S.) |b 14 illus., 11 illus. in color | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 1 | |a Lecture notes in mathematics |v 2134 |x 0075-8434 | |
650 | 4 | |a Mathematics | |
650 | 4 | |a Geometry | |
650 | 4 | |a Mathematical optimization | |
650 | 4 | |a Distribution (Probability theory) | |
650 | 4 | |a Probability Theory and Stochastic Processes | |
650 | 4 | |a Optimization | |
650 | 4 | |a Mathematics, general | |
650 | 4 | |a Mathematik | |
830 | 0 | |a Lecture Notes in Mathematics |v 2134 |w (DE-604)BV014303148 |9 2134 | |
856 | 4 | 0 | |u https://doi.org/10.1007/978-3-319-17753-3 |x Verlag |3 Volltext |
856 | 4 | 2 | |m Springer Fremddatenuebernahme |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=028161382&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Abstract |
912 | |a ZDB-2-SMA |a ZDB-2-LNM | ||
940 | 1 | |q UBY_PDA_SMA | |
940 | 1 | |q ZDB-2-SMA_2015 | |
940 | 1 | |q ZDB-2-LNM_2015 | |
999 | |a oai:aleph.bib-bvb.de:BVB01-028161382 |
Datensatz im Suchindex
_version_ | 1804174941882417152 |
---|---|
adam_text | MINIMUM ACTION CURVES IN DEGENERATE FINSLER METRICS
/ HEYMANN, MATTHIAS
: 2015
ABSTRACT / INHALTSTEXT
PRESENTING A STUDY OF GEOMETRIC ACTION FUNCTIONALS (I.E., NON-NEGATIVE
FUNCTIONALS ON THE SPACE OF UNPARAMETERIZED ORIENTED RECTIFIABLE
CURVES),THIS MONOGRAPH FOCUSESON THE SUBCLASS OF THOSE FUNCTIONALS
WHOSE LOCAL ACTION IS A DEGENERATE TYPE OF FINSLER METRIC THAT MAY
VANISH IN CERTAIN DIRECTIONS, ALLOWING FOR CURVES WITH POSITIVE
EUCLIDEAN LENGTH BUT WITH ZERO ACTION.FOR SUCH FUNCTIONALS, CRITERIA
ARE DEVELOPED UNDER WHICH THERE EXISTS A MINIMUM ACTION CURVE LEADING
FROM ONE GIVEN SET TO ANOTHER. THEN THE PROPERTIES OF THIS CURVE ARE
STUDIED, AND THE NON-EXISTENCE OF MINIMIZERS IS ESTABLISHED IN SOME
SETTINGS. APPLIED TO A GEOMETRIC REFORMULATION OF THE QUASIPOTENTIAL OF
WENTZELL-FREIDLIN THEORY (A SUBFIELD OF LARGE DEVIATION THEORY), THESE
RESULTS CAN YIELD THE EXISTENCE AND PROPERTIES OF MAXIMUM LIKELIHOOD
TRANSITION CURVES BETWEEN TWO METASTABLE STATES IN A STOCHASTIC PROCESS
WITH SMALL NOISE. THE BOOK ASSUMES ONLY STANDARD KNOWLEDGE IN
GRADUATE-LEVEL ANALYSIS; ALL HIGHER-LEVEL MATHEMATICAL CONCEPTS ARE
INTRODUCED ALONG THE WAY.
DIESES SCHRIFTSTUECK WURDE MASCHINELL ERZEUGT.
|
any_adam_object | 1 |
author | Heymann, Matthias 1977- |
author_GND | (DE-588)1075862248 |
author_facet | Heymann, Matthias 1977- |
author_role | aut |
author_sort | Heymann, Matthias 1977- |
author_variant | m h mh |
building | Verbundindex |
bvnumber | BV042730351 |
classification_tum | MAT 000 |
collection | ZDB-2-SMA ZDB-2-LNM |
ctrlnum | (OCoLC)915768195 (DE-599)BVBBV042730351 |
dewey-full | 519.2 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 519 - Probabilities and applied mathematics |
dewey-raw | 519.2 |
dewey-search | 519.2 |
dewey-sort | 3519.2 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
doi_str_mv | 10.1007/978-3-319-17753-3 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01954nmm a2200493zcb4500</leader><controlfield tag="001">BV042730351</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20200929 </controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">150803s2015 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783319177533</subfield><subfield code="c">Online</subfield><subfield code="9">978-3-319-17753-3</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783319177526</subfield><subfield code="c">Print</subfield><subfield code="9">978-3-319-17752-6</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/978-3-319-17753-3</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)915768195</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV042730351</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-91</subfield><subfield code="a">DE-19</subfield><subfield code="a">DE-384</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-20</subfield><subfield code="a">DE-739</subfield><subfield code="a">DE-634</subfield><subfield code="a">DE-824</subfield><subfield code="a">DE-861</subfield><subfield code="a">DE-83</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">519.2</subfield><subfield code="2">23</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 000</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Heymann, Matthias</subfield><subfield code="d">1977-</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)1075862248</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Minimum action curves in degenerate Finsler metrics</subfield><subfield code="b">existence and properties</subfield><subfield code="c">Matthias Heymann</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Cham [u.a.]</subfield><subfield code="b">Springer</subfield><subfield code="c">2015</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (XV, 186 S.)</subfield><subfield code="b">14 illus., 11 illus. in color</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Lecture notes in mathematics</subfield><subfield code="v">2134</subfield><subfield code="x">0075-8434</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Geometry</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematical optimization</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Distribution (Probability theory)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Probability Theory and Stochastic Processes</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Optimization</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematics, general</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematik</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">Lecture Notes in Mathematics</subfield><subfield code="v">2134</subfield><subfield code="w">(DE-604)BV014303148</subfield><subfield code="9">2134</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1007/978-3-319-17753-3</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">Springer Fremddatenuebernahme</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=028161382&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Abstract</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-2-SMA</subfield><subfield code="a">ZDB-2-LNM</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">UBY_PDA_SMA</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">ZDB-2-SMA_2015</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">ZDB-2-LNM_2015</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-028161382</subfield></datafield></record></collection> |
id | DE-604.BV042730351 |
illustrated | Illustrated |
indexdate | 2024-07-10T07:08:24Z |
institution | BVB |
isbn | 9783319177533 9783319177526 |
issn | 0075-8434 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-028161382 |
oclc_num | 915768195 |
open_access_boolean | |
owner | DE-91 DE-BY-TUM DE-19 DE-BY-UBM DE-384 DE-703 DE-20 DE-739 DE-634 DE-824 DE-861 DE-83 |
owner_facet | DE-91 DE-BY-TUM DE-19 DE-BY-UBM DE-384 DE-703 DE-20 DE-739 DE-634 DE-824 DE-861 DE-83 |
physical | 1 Online-Ressource (XV, 186 S.) 14 illus., 11 illus. in color |
psigel | ZDB-2-SMA ZDB-2-LNM UBY_PDA_SMA ZDB-2-SMA_2015 ZDB-2-LNM_2015 |
publishDate | 2015 |
publishDateSearch | 2015 |
publishDateSort | 2015 |
publisher | Springer |
record_format | marc |
series | Lecture Notes in Mathematics |
series2 | Lecture notes in mathematics |
spelling | Heymann, Matthias 1977- Verfasser (DE-588)1075862248 aut Minimum action curves in degenerate Finsler metrics existence and properties Matthias Heymann Cham [u.a.] Springer 2015 1 Online-Ressource (XV, 186 S.) 14 illus., 11 illus. in color txt rdacontent c rdamedia cr rdacarrier Lecture notes in mathematics 2134 0075-8434 Mathematics Geometry Mathematical optimization Distribution (Probability theory) Probability Theory and Stochastic Processes Optimization Mathematics, general Mathematik Lecture Notes in Mathematics 2134 (DE-604)BV014303148 2134 https://doi.org/10.1007/978-3-319-17753-3 Verlag Volltext Springer Fremddatenuebernahme application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=028161382&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Abstract |
spellingShingle | Heymann, Matthias 1977- Minimum action curves in degenerate Finsler metrics existence and properties Lecture Notes in Mathematics Mathematics Geometry Mathematical optimization Distribution (Probability theory) Probability Theory and Stochastic Processes Optimization Mathematics, general Mathematik |
title | Minimum action curves in degenerate Finsler metrics existence and properties |
title_auth | Minimum action curves in degenerate Finsler metrics existence and properties |
title_exact_search | Minimum action curves in degenerate Finsler metrics existence and properties |
title_full | Minimum action curves in degenerate Finsler metrics existence and properties Matthias Heymann |
title_fullStr | Minimum action curves in degenerate Finsler metrics existence and properties Matthias Heymann |
title_full_unstemmed | Minimum action curves in degenerate Finsler metrics existence and properties Matthias Heymann |
title_short | Minimum action curves in degenerate Finsler metrics |
title_sort | minimum action curves in degenerate finsler metrics existence and properties |
title_sub | existence and properties |
topic | Mathematics Geometry Mathematical optimization Distribution (Probability theory) Probability Theory and Stochastic Processes Optimization Mathematics, general Mathematik |
topic_facet | Mathematics Geometry Mathematical optimization Distribution (Probability theory) Probability Theory and Stochastic Processes Optimization Mathematics, general Mathematik |
url | https://doi.org/10.1007/978-3-319-17753-3 http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=028161382&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
volume_link | (DE-604)BV014303148 |
work_keys_str_mv | AT heymannmatthias minimumactioncurvesindegeneratefinslermetricsexistenceandproperties |