Elliptic–hyperbolic partial differential equations: a mini-course in geometric and quasilinear methods
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Cham [u.a.]
Springer
2015
|
Schriftenreihe: | SpringerBriefs in mathematics
|
Schlagworte: | |
Online-Zugang: | BTU01 FRO01 TUM01 UBM01 UBT01 UBW01 UPA01 Volltext Inhaltsverzeichnis Abstract |
Beschreibung: | 1 Online-Ressource (VII, 128 S.) 15 illus., 6 illus. in color |
ISBN: | 9783319197616 |
ISSN: | 2191-8198 |
DOI: | 10.1007/978-3-319-19761-6 |
Internformat
MARC
LEADER | 00000nmm a2200000zc 4500 | ||
---|---|---|---|
001 | BV042730226 | ||
003 | DE-604 | ||
005 | 20200929 | ||
007 | cr|uuu---uuuuu | ||
008 | 150803s2015 |||| o||u| ||||||eng d | ||
020 | |a 9783319197616 |c Online |9 978-3-319-19761-6 | ||
024 | 7 | |a 10.1007/978-3-319-19761-6 |2 doi | |
035 | |a (OCoLC)915789451 | ||
035 | |a (DE-599)BVBBV042730226 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-91 |a DE-19 |a DE-703 |a DE-20 |a DE-739 |a DE-634 |a DE-861 |a DE-83 | ||
082 | 0 | |a 515.353 |2 23 | |
084 | |a MAT 000 |2 stub | ||
100 | 1 | |a Otway, Thomas H. |e Verfasser |0 (DE-588)1020087315 |4 aut | |
245 | 1 | 0 | |a Elliptic–hyperbolic partial differential equations |b a mini-course in geometric and quasilinear methods |c Thomas H. Otway |
264 | 1 | |a Cham [u.a.] |b Springer |c 2015 | |
300 | |a 1 Online-Ressource (VII, 128 S.) |b 15 illus., 6 illus. in color | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a SpringerBriefs in mathematics |x 2191-8198 | |
650 | 4 | |a Mathematics | |
650 | 4 | |a Differential equations, partial | |
650 | 4 | |a Partial Differential Equations | |
650 | 4 | |a Mathematical Applications in the Physical Sciences | |
650 | 4 | |a Mathematik | |
776 | 0 | 8 | |i Erscheint auch als |n Druckausgabe |z 978-3-319-19760-9 |
856 | 4 | 0 | |u https://doi.org/10.1007/978-3-319-19761-6 |x Verlag |3 Volltext |
856 | 4 | 2 | |m Springer Fremddatenuebernahme |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=028161257&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
856 | 4 | 2 | |m Springer Fremddatenuebernahme |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=028161257&sequence=000003&line_number=0002&func_code=DB_RECORDS&service_type=MEDIA |3 Abstract |
912 | |a ZDB-2-SMA | ||
940 | 1 | |q UBY_PDA_SMA | |
940 | 1 | |q ZDB-2-SMA_2015 | |
999 | |a oai:aleph.bib-bvb.de:BVB01-028161257 | ||
966 | e | |u https://doi.org/10.1007/978-3-319-19761-6 |l BTU01 |p ZDB-2-SMA |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1007/978-3-319-19761-6 |l FRO01 |p ZDB-2-SMA |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1007/978-3-319-19761-6 |l TUM01 |p ZDB-2-SMA |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1007/978-3-319-19761-6 |l UBM01 |p ZDB-2-SMA |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1007/978-3-319-19761-6 |l UBT01 |p ZDB-2-SMA |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1007/978-3-319-19761-6 |l UBW01 |p ZDB-2-SMA |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1007/978-3-319-19761-6 |l UPA01 |p ZDB-2-SMA |x Verlag |3 Volltext |
Datensatz im Suchindex
_version_ | 1804174941604544512 |
---|---|
adam_text | ELLIPTIC–HYPERBOLIC PARTIAL DIFFERENTIAL EQUATIONS
/ OTWAY, THOMAS H.
: 2015
TABLE OF CONTENTS / INHALTSVERZEICHNIS
INTRODUCTION
OVERVIEW OF ELLIPTIC–HYPERBOLIC PDE
HODOGRAPH AND PARTIAL HODOGRAPH METHODS
BOUNDARY VALUE PROBLEMS
B¨ACKLUND TRANSFORMATIONS AND HODGE-THEORETIC METHODS
NATURAL FOCUSING
DIESES SCHRIFTSTUECK WURDE MASCHINELL ERZEUGT.
ELLIPTIC–HYPERBOLIC PARTIAL DIFFERENTIAL EQUATIONS
/ OTWAY, THOMAS H.
: 2015
ABSTRACT / INHALTSTEXT
THIS TEXT IS A CONCISE INTRODUCTION TO THE PARTIAL DIFFERENTIAL
EQUATIONS WHICH CHANGE FROM ELLIPTIC TO HYPERBOLIC TYPE ACROSS A SMOOTH
HYPERSURFACE OF THEIR DOMAIN. THESE ARE BECOMING INCREASINGLY IMPORTANT
IN DIVERSE SUB-FIELDS OF BOTH APPLIED MATHEMATICS AND ENGINEERING, FOR
EXAMPLE: • THE HEATING OF FUSION PLASMAS BY ELECTROMAGNETIC WAVES
• THE BEHAVIOUR OF LIGHT NEAR A CAUSTIC • EXTREMAL SURFACES IN THE
SPACE OF SPECIAL RELATIVITY • THE FORMATION OF RAPIDS; TRANSONIC AND
MULTIPHASE FLUID FLOW • THE DYNAMICS OF CERTAIN MODELS FOR ELASTIC
STRUCTURES • THE SHAPE OF INDUSTRIAL SURFACES SUCH AS WINDSHIELDS AND
AIRFOILS • PATHOLOGIES OF TRAFFIC FLOW • HARMONIC FIELDS IN EXTENDED
PROJECTIVE SPACE THEY ALSO ARISE IN MODELS FOR THE EARLY UNIVERSE,
FOR COSMIC ACCELERATION, AND FOR POSSIBLE VIOLATION OF CAUSALITY IN THE
INTERIORS OF CERTAIN COMPACT STARS. WITHIN THE PAST 25 YEARS, THEY HAVE
BECOME CENTRAL TO THE ISOMETRIC EMBEDDING OF RIEMANNIAN MANIFOLDS AND
THE PRESCRIPTION OF GAUSS CURVATURE FOR SURFACES: TOPICS IN PURE
MATHEMATICS WHICH THEMSELVES HAVE IMPORTANT APPLICATIONS.
ELLIPTIC−HYPERBOLIC PARTIAL DIFFERENTIAL EQUATIONS IS DERIVED FROM A
MINI-COURSE GIVEN AT THE ICMS WORKSHOP ON DIFFERENTIAL GEOMETRY AND
CONTINUUM MECHANICS HELD IN EDINBURGH, SCOTLAND IN JUNE 2013. THE FOCUS
ON GEOMETRY IN THAT MEETING IS REFLECTED IN THESE NOTES, ALONG WITH THE
FOCUS ON QUASILINEAR EQUATIONS. IN THE SPIRIT OF THE ICMS WORKSHOP, THIS
COURSE IS ADDRESSED BOTH TO APPLIED MATHEMATICIANS AND TO
MATHEMATICALLY-ORIENTED ENGINEERS. THE EMPHASIS IS ON VERY RECENT
APPLICATIONS AND METHODS, THE MAJORITY OF WHICH HAVE NOT PREVIOUSLY
APPEARED IN BOOK FORM
DIESES SCHRIFTSTUECK WURDE MASCHINELL ERZEUGT.
|
any_adam_object | 1 |
author | Otway, Thomas H. |
author_GND | (DE-588)1020087315 |
author_facet | Otway, Thomas H. |
author_role | aut |
author_sort | Otway, Thomas H. |
author_variant | t h o th tho |
building | Verbundindex |
bvnumber | BV042730226 |
classification_tum | MAT 000 |
collection | ZDB-2-SMA |
ctrlnum | (OCoLC)915789451 (DE-599)BVBBV042730226 |
dewey-full | 515.353 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 515 - Analysis |
dewey-raw | 515.353 |
dewey-search | 515.353 |
dewey-sort | 3515.353 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
doi_str_mv | 10.1007/978-3-319-19761-6 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02678nmm a2200529zc 4500</leader><controlfield tag="001">BV042730226</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20200929 </controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">150803s2015 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783319197616</subfield><subfield code="c">Online</subfield><subfield code="9">978-3-319-19761-6</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/978-3-319-19761-6</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)915789451</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV042730226</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-91</subfield><subfield code="a">DE-19</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-20</subfield><subfield code="a">DE-739</subfield><subfield code="a">DE-634</subfield><subfield code="a">DE-861</subfield><subfield code="a">DE-83</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">515.353</subfield><subfield code="2">23</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 000</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Otway, Thomas H.</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)1020087315</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Elliptic–hyperbolic partial differential equations</subfield><subfield code="b">a mini-course in geometric and quasilinear methods</subfield><subfield code="c">Thomas H. Otway</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Cham [u.a.]</subfield><subfield code="b">Springer</subfield><subfield code="c">2015</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (VII, 128 S.)</subfield><subfield code="b">15 illus., 6 illus. in color</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">SpringerBriefs in mathematics</subfield><subfield code="x">2191-8198</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Differential equations, partial</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Partial Differential Equations</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematical Applications in the Physical Sciences</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematik</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druckausgabe</subfield><subfield code="z">978-3-319-19760-9</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1007/978-3-319-19761-6</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">Springer Fremddatenuebernahme</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=028161257&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">Springer Fremddatenuebernahme</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=028161257&sequence=000003&line_number=0002&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Abstract</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-2-SMA</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">UBY_PDA_SMA</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">ZDB-2-SMA_2015</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-028161257</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-3-319-19761-6</subfield><subfield code="l">BTU01</subfield><subfield code="p">ZDB-2-SMA</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-3-319-19761-6</subfield><subfield code="l">FRO01</subfield><subfield code="p">ZDB-2-SMA</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-3-319-19761-6</subfield><subfield code="l">TUM01</subfield><subfield code="p">ZDB-2-SMA</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-3-319-19761-6</subfield><subfield code="l">UBM01</subfield><subfield code="p">ZDB-2-SMA</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-3-319-19761-6</subfield><subfield code="l">UBT01</subfield><subfield code="p">ZDB-2-SMA</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-3-319-19761-6</subfield><subfield code="l">UBW01</subfield><subfield code="p">ZDB-2-SMA</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-3-319-19761-6</subfield><subfield code="l">UPA01</subfield><subfield code="p">ZDB-2-SMA</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV042730226 |
illustrated | Illustrated |
indexdate | 2024-07-10T07:08:24Z |
institution | BVB |
isbn | 9783319197616 |
issn | 2191-8198 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-028161257 |
oclc_num | 915789451 |
open_access_boolean | |
owner | DE-91 DE-BY-TUM DE-19 DE-BY-UBM DE-703 DE-20 DE-739 DE-634 DE-861 DE-83 |
owner_facet | DE-91 DE-BY-TUM DE-19 DE-BY-UBM DE-703 DE-20 DE-739 DE-634 DE-861 DE-83 |
physical | 1 Online-Ressource (VII, 128 S.) 15 illus., 6 illus. in color |
psigel | ZDB-2-SMA UBY_PDA_SMA ZDB-2-SMA_2015 |
publishDate | 2015 |
publishDateSearch | 2015 |
publishDateSort | 2015 |
publisher | Springer |
record_format | marc |
series2 | SpringerBriefs in mathematics |
spelling | Otway, Thomas H. Verfasser (DE-588)1020087315 aut Elliptic–hyperbolic partial differential equations a mini-course in geometric and quasilinear methods Thomas H. Otway Cham [u.a.] Springer 2015 1 Online-Ressource (VII, 128 S.) 15 illus., 6 illus. in color txt rdacontent c rdamedia cr rdacarrier SpringerBriefs in mathematics 2191-8198 Mathematics Differential equations, partial Partial Differential Equations Mathematical Applications in the Physical Sciences Mathematik Erscheint auch als Druckausgabe 978-3-319-19760-9 https://doi.org/10.1007/978-3-319-19761-6 Verlag Volltext Springer Fremddatenuebernahme application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=028161257&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis Springer Fremddatenuebernahme application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=028161257&sequence=000003&line_number=0002&func_code=DB_RECORDS&service_type=MEDIA Abstract |
spellingShingle | Otway, Thomas H. Elliptic–hyperbolic partial differential equations a mini-course in geometric and quasilinear methods Mathematics Differential equations, partial Partial Differential Equations Mathematical Applications in the Physical Sciences Mathematik |
title | Elliptic–hyperbolic partial differential equations a mini-course in geometric and quasilinear methods |
title_auth | Elliptic–hyperbolic partial differential equations a mini-course in geometric and quasilinear methods |
title_exact_search | Elliptic–hyperbolic partial differential equations a mini-course in geometric and quasilinear methods |
title_full | Elliptic–hyperbolic partial differential equations a mini-course in geometric and quasilinear methods Thomas H. Otway |
title_fullStr | Elliptic–hyperbolic partial differential equations a mini-course in geometric and quasilinear methods Thomas H. Otway |
title_full_unstemmed | Elliptic–hyperbolic partial differential equations a mini-course in geometric and quasilinear methods Thomas H. Otway |
title_short | Elliptic–hyperbolic partial differential equations |
title_sort | elliptic hyperbolic partial differential equations a mini course in geometric and quasilinear methods |
title_sub | a mini-course in geometric and quasilinear methods |
topic | Mathematics Differential equations, partial Partial Differential Equations Mathematical Applications in the Physical Sciences Mathematik |
topic_facet | Mathematics Differential equations, partial Partial Differential Equations Mathematical Applications in the Physical Sciences Mathematik |
url | https://doi.org/10.1007/978-3-319-19761-6 http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=028161257&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=028161257&sequence=000003&line_number=0002&func_code=DB_RECORDS&service_type=MEDIA |
work_keys_str_mv | AT otwaythomash elliptichyperbolicpartialdifferentialequationsaminicourseingeometricandquasilinearmethods |