An introduction to differential manifolds:
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Cham [u.a.]
Springer
2015
|
Schlagworte: | |
Online-Zugang: | BTU01 FRO01 TUM01 UBM01 UBT01 UBW01 UPA01 Volltext Inhaltsverzeichnis Abstract |
Beschreibung: | 1 Online-Ressource (XIX, 395 S.) 49 illus |
ISBN: | 9783319207353 |
DOI: | 10.1007/978-3-319-20735-3 |
Internformat
MARC
LEADER | 00000nmm a2200000zc 4500 | ||
---|---|---|---|
001 | BV042730171 | ||
003 | DE-604 | ||
005 | 20200930 | ||
007 | cr|uuu---uuuuu | ||
008 | 150803s2015 |||| o||u| ||||||eng d | ||
020 | |a 9783319207353 |c Online |9 978-3-319-20735-3 | ||
024 | 7 | |a 10.1007/978-3-319-20735-3 |2 doi | |
035 | |a (OCoLC)915902536 | ||
035 | |a (DE-599)BVBBV042730171 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-91 |a DE-19 |a DE-703 |a DE-20 |a DE-739 |a DE-634 |a DE-861 |a DE-83 | ||
082 | 0 | |a 516.36 |2 23 | |
084 | |a SK 370 |0 (DE-625)143234: |2 rvk | ||
084 | |a MAT 000 |2 stub | ||
100 | 1 | |a Lafontaine, Jacques |e Verfasser |4 aut | |
245 | 1 | 0 | |a An introduction to differential manifolds |c Jacques Lafontaine |
264 | 1 | |a Cham [u.a.] |b Springer |c 2015 | |
300 | |a 1 Online-Ressource (XIX, 395 S.) |b 49 illus | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
650 | 4 | |a Mathematics | |
650 | 4 | |a Global differential geometry | |
650 | 4 | |a Differential Geometry | |
650 | 4 | |a Mathematik | |
650 | 0 | 7 | |a Differenzierbare Mannigfaltigkeit |0 (DE-588)4012269-4 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Differenzierbare Mannigfaltigkeit |0 (DE-588)4012269-4 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
776 | 0 | 8 | |i Erscheint auch als |n Druckausgabe |z 978-3-319-20734-6 |
856 | 4 | 0 | |u https://doi.org/10.1007/978-3-319-20735-3 |x Verlag |3 Volltext |
856 | 4 | 2 | |m Springer Fremddatenuebernahme |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=028161202&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
856 | 4 | 2 | |m Springer Fremddatenuebernahme |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=028161202&sequence=000003&line_number=0002&func_code=DB_RECORDS&service_type=MEDIA |3 Abstract |
912 | |a ZDB-2-SMA | ||
940 | 1 | |q UBY_PDA_SMA | |
940 | 1 | |q ZDB-2-SMA_2015 | |
999 | |a oai:aleph.bib-bvb.de:BVB01-028161202 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
966 | e | |u https://doi.org/10.1007/978-3-319-20735-3 |l BTU01 |p ZDB-2-SMA |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1007/978-3-319-20735-3 |l FRO01 |p ZDB-2-SMA |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1007/978-3-319-20735-3 |l TUM01 |p ZDB-2-SMA |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1007/978-3-319-20735-3 |l UBM01 |p ZDB-2-SMA |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1007/978-3-319-20735-3 |l UBT01 |p ZDB-2-SMA |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1007/978-3-319-20735-3 |l UBW01 |p ZDB-2-SMA |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1007/978-3-319-20735-3 |l UPA01 |p ZDB-2-SMA |x Verlag |3 Volltext |
Datensatz im Suchindex
_version_ | 1804174941480812544 |
---|---|
adam_text | AN INTRODUCTION TO DIFFERENTIAL MANIFOLDS
/ LAFONTAINE, JACQUES
: 2015
TABLE OF CONTENTS / INHALTSVERZEICHNIS
DIFFERENTIAL CALCULUS
MANIFOLDS: THE BASICS
FROM LOCAL TO GLOBAL
LIE GROUPS
DIFFERENTIAL FORMS
INTEGRATION AND APPLICATIONS
COHOMOLOGY AND DEGREE THEORY
EULER-POINCARE AND GAUSS-BONNET
DIESES SCHRIFTSTUECK WURDE MASCHINELL ERZEUGT.
AN INTRODUCTION TO DIFFERENTIAL MANIFOLDS
/ LAFONTAINE, JACQUES
: 2015
ABSTRACT / INHALTSTEXT
THIS BOOK IS AN INTRODUCTION TO DIFFERENTIAL MANIFOLDS. IT GIVES SOLID
PRELIMINARIES FOR MORE ADVANCED TOPICS: RIEMANNIAN MANIFOLDS,
DIFFERENTIAL TOPOLOGY, LIE THEORY. IT PRESUPPOSES LITTLE BACKGROUND: THE
READER IS ONLY EXPECTED TO MASTER BASIC DIFFERENTIAL CALCULUS, AND A
LITTLE POINT-SET TOPOLOGY. THE BOOK COVERS THE MAIN TOPICS OF
DIFFERENTIAL GEOMETRY: MANIFOLDS, TANGENT SPACE, VECTOR FIELDS,
DIFFERENTIAL FORMS, LIE GROUPS, AND A FEW MORE SOPHISTICATED TOPICS SUCH
AS DE RHAM COHOMOLOGY, DEGREE THEORY AND THE GAUSS-BONNET THEOREM FOR
SURFACES. ITS AMBITION IS TO GIVE SOLID FOUNDATIONS. IN PARTICULAR, THE
INTRODUCTION OF “ABSTRACT” NOTIONS SUCH AS MANIFOLDS OR DIFFERENTIAL
FORMS IS MOTIVATED VIA QUESTIONS AND EXAMPLES FROM MATHEMATICS OR
THEORETICAL PHYSICS. MORE THAN 150 EXERCISES, SOME OF THEM EASY AND
CLASSICAL, SOME OTHERS MORE SOPHISTICATED, WILL HELP THE BEGINNER AS
WELL AS THE MORE EXPERT READER. SOLUTIONS ARE PROVIDED FOR MOST OF THEM.
THE BOOK SHOULD BE OF INTEREST TO VARIOUS READERS: UNDERGRADUATE AND
GRADUATE STUDENTS FOR A FIRST CONTACT TO DIFFERENTIAL MANIFOLDS,
MATHEMATICIANS FROM OTHER FIELDS AND PHYSICISTS WHO WISH TO ACQUIRE SOME
FEELING ABOUT THIS BEAUTIFUL THEORY. THE ORIGINAL FRENCH TEXT
INTRODUCTION AUX VARIETES DIFFERENTIELLES HAS BEEN A BEST-SELLER IN
ITS CATEGORY IN FRANCE FOR MANY YEARS. JACQUES LAFONTAINE WAS
SUCCESSIVELY ASSISTANT PROFESSOR AT PARIS DIDEROT UNIVERSITY AND
PROFESSOR AT THE UNIVERSITY OF MONTPELLIER, WHERE HE IS PRESENTLY
EMERITUS. HIS MAIN RESEARCH INTERESTS ARE RIEMANNIAN AND
PSEUDO-RIEMANNIAN GEOMETRY, INCLUDING SOME ASPECTS OF MATHEMATICAL
RELATIVITY. BESIDES HIS PERSONAL RESEARCH ARTICLES, HE WAS INVOLVED IN
SEVERAL TEXTBOOKS AND RESEARCH MONOGRAPHS
DIESES SCHRIFTSTUECK WURDE MASCHINELL ERZEUGT.
|
any_adam_object | 1 |
author | Lafontaine, Jacques |
author_facet | Lafontaine, Jacques |
author_role | aut |
author_sort | Lafontaine, Jacques |
author_variant | j l jl |
building | Verbundindex |
bvnumber | BV042730171 |
classification_rvk | SK 370 |
classification_tum | MAT 000 |
collection | ZDB-2-SMA |
ctrlnum | (OCoLC)915902536 (DE-599)BVBBV042730171 |
dewey-full | 516.36 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 516 - Geometry |
dewey-raw | 516.36 |
dewey-search | 516.36 |
dewey-sort | 3516.36 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
doi_str_mv | 10.1007/978-3-319-20735-3 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02763nmm a2200565zc 4500</leader><controlfield tag="001">BV042730171</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20200930 </controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">150803s2015 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783319207353</subfield><subfield code="c">Online</subfield><subfield code="9">978-3-319-20735-3</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/978-3-319-20735-3</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)915902536</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV042730171</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-91</subfield><subfield code="a">DE-19</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-20</subfield><subfield code="a">DE-739</subfield><subfield code="a">DE-634</subfield><subfield code="a">DE-861</subfield><subfield code="a">DE-83</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">516.36</subfield><subfield code="2">23</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 370</subfield><subfield code="0">(DE-625)143234:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 000</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Lafontaine, Jacques</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">An introduction to differential manifolds</subfield><subfield code="c">Jacques Lafontaine</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Cham [u.a.]</subfield><subfield code="b">Springer</subfield><subfield code="c">2015</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (XIX, 395 S.)</subfield><subfield code="b">49 illus</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Global differential geometry</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Differential Geometry</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematik</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Differenzierbare Mannigfaltigkeit</subfield><subfield code="0">(DE-588)4012269-4</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Differenzierbare Mannigfaltigkeit</subfield><subfield code="0">(DE-588)4012269-4</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druckausgabe</subfield><subfield code="z">978-3-319-20734-6</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1007/978-3-319-20735-3</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">Springer Fremddatenuebernahme</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=028161202&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">Springer Fremddatenuebernahme</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=028161202&sequence=000003&line_number=0002&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Abstract</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-2-SMA</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">UBY_PDA_SMA</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">ZDB-2-SMA_2015</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-028161202</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-3-319-20735-3</subfield><subfield code="l">BTU01</subfield><subfield code="p">ZDB-2-SMA</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-3-319-20735-3</subfield><subfield code="l">FRO01</subfield><subfield code="p">ZDB-2-SMA</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-3-319-20735-3</subfield><subfield code="l">TUM01</subfield><subfield code="p">ZDB-2-SMA</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-3-319-20735-3</subfield><subfield code="l">UBM01</subfield><subfield code="p">ZDB-2-SMA</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-3-319-20735-3</subfield><subfield code="l">UBT01</subfield><subfield code="p">ZDB-2-SMA</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-3-319-20735-3</subfield><subfield code="l">UBW01</subfield><subfield code="p">ZDB-2-SMA</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-3-319-20735-3</subfield><subfield code="l">UPA01</subfield><subfield code="p">ZDB-2-SMA</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV042730171 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T07:08:23Z |
institution | BVB |
isbn | 9783319207353 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-028161202 |
oclc_num | 915902536 |
open_access_boolean | |
owner | DE-91 DE-BY-TUM DE-19 DE-BY-UBM DE-703 DE-20 DE-739 DE-634 DE-861 DE-83 |
owner_facet | DE-91 DE-BY-TUM DE-19 DE-BY-UBM DE-703 DE-20 DE-739 DE-634 DE-861 DE-83 |
physical | 1 Online-Ressource (XIX, 395 S.) 49 illus |
psigel | ZDB-2-SMA UBY_PDA_SMA ZDB-2-SMA_2015 |
publishDate | 2015 |
publishDateSearch | 2015 |
publishDateSort | 2015 |
publisher | Springer |
record_format | marc |
spelling | Lafontaine, Jacques Verfasser aut An introduction to differential manifolds Jacques Lafontaine Cham [u.a.] Springer 2015 1 Online-Ressource (XIX, 395 S.) 49 illus txt rdacontent c rdamedia cr rdacarrier Mathematics Global differential geometry Differential Geometry Mathematik Differenzierbare Mannigfaltigkeit (DE-588)4012269-4 gnd rswk-swf Differenzierbare Mannigfaltigkeit (DE-588)4012269-4 s 1\p DE-604 Erscheint auch als Druckausgabe 978-3-319-20734-6 https://doi.org/10.1007/978-3-319-20735-3 Verlag Volltext Springer Fremddatenuebernahme application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=028161202&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis Springer Fremddatenuebernahme application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=028161202&sequence=000003&line_number=0002&func_code=DB_RECORDS&service_type=MEDIA Abstract 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Lafontaine, Jacques An introduction to differential manifolds Mathematics Global differential geometry Differential Geometry Mathematik Differenzierbare Mannigfaltigkeit (DE-588)4012269-4 gnd |
subject_GND | (DE-588)4012269-4 |
title | An introduction to differential manifolds |
title_auth | An introduction to differential manifolds |
title_exact_search | An introduction to differential manifolds |
title_full | An introduction to differential manifolds Jacques Lafontaine |
title_fullStr | An introduction to differential manifolds Jacques Lafontaine |
title_full_unstemmed | An introduction to differential manifolds Jacques Lafontaine |
title_short | An introduction to differential manifolds |
title_sort | an introduction to differential manifolds |
topic | Mathematics Global differential geometry Differential Geometry Mathematik Differenzierbare Mannigfaltigkeit (DE-588)4012269-4 gnd |
topic_facet | Mathematics Global differential geometry Differential Geometry Mathematik Differenzierbare Mannigfaltigkeit |
url | https://doi.org/10.1007/978-3-319-20735-3 http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=028161202&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=028161202&sequence=000003&line_number=0002&func_code=DB_RECORDS&service_type=MEDIA |
work_keys_str_mv | AT lafontainejacques anintroductiontodifferentialmanifolds |