Oil and gas pipelines: integrity and safety handbook
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
Hoboken
Wiley
2015
|
Schlagworte: | |
Online-Zugang: | Inhaltsverzeichnis |
Beschreibung: | Includes bibliographical references and index |
Beschreibung: | xxxv, 816 S. Ill., graph. Darst. 29 cm |
ISBN: | 9781118216712 |
Internformat
MARC
LEADER | 00000nam a2200000 c 4500 | ||
---|---|---|---|
001 | BV042606004 | ||
003 | DE-604 | ||
005 | 20160508 | ||
007 | t | ||
008 | 150609s2015 ad|| |||| 00||| eng d | ||
020 | |a 9781118216712 |9 9781-118-21671-2 | ||
035 | |a (OCoLC)914342398 | ||
035 | |a (DE-599)BVBBV042606004 | ||
040 | |a DE-604 |b ger |e rakwb | ||
041 | 0 | |a eng | |
049 | |a DE-29T |a DE-210 | ||
082 | 0 | |a 665.5/440289 | |
100 | 1 | |a Revie, R. Winston |d 1944- |e Verfasser |0 (DE-588)136729088 |4 aut | |
240 | 1 | 0 | |a Oil and gas pipelines (Hoboken, N.J.) |
245 | 1 | 0 | |a Oil and gas pipelines |b integrity and safety handbook |c edited by R. Winston Revie |
264 | 1 | |a Hoboken |b Wiley |c 2015 | |
300 | |a xxxv, 816 S. |b Ill., graph. Darst. |c 29 cm | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
500 | |a Includes bibliographical references and index | ||
650 | 0 | 7 | |a Erdöl |0 (DE-588)4015179-7 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Erdgas |0 (DE-588)4015143-8 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Pipeline |0 (DE-588)4125984-1 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Erdöl |0 (DE-588)4015179-7 |D s |
689 | 0 | 1 | |a Erdgas |0 (DE-588)4015143-8 |D s |
689 | 0 | 2 | |a Pipeline |0 (DE-588)4125984-1 |D s |
689 | 0 | |5 DE-604 | |
856 | 4 | 2 | |m HBZ Datenaustausch |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=028038969&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
999 | |a oai:aleph.bib-bvb.de:BVB01-028038969 |
Datensatz im Suchindex
_version_ | 1804174775631740929 |
---|---|
adam_text | Titel: Oil and gas pipelines
Autor: Revie, R. Winston
Jahr: 2015
CONTENTS
PREFACE xxxi
CONTRTBUTORS xxxiii
PARTI DESIGN
1 Pipeline Integrity Management Systems (PEVIS) 3
Ray Goodfellow and Katherine Jonsson
1.1 Introduction 3
1.2 Lessons Learned and the Evolution of Pipeline
Integrity 4
1.3 WhatlsaPEMS? 4
1.4 Regulatory Requirements 5
1.5 Core Structure and PEMS Elements 6
1.6 PEMS Function Map 8
1.7 Plan: Strategie and Operational 8
1.8 Do: Execute 9
1.9 Check: Assurance and Verification 10
1.10 Act: Management Review 10
1.11 Culture 11
1.12 Summary 11
References 11
2 SCADA: Supervisory Control and Data Acquisitum 13
Michael VanderZee, Doug Fisher, Gail Powley, and Rumi Mohammad
2.1 Introduction 13
2.2 SCADA Computer Servers 14
2.3 SCADA Computer Workstations 14
2.4 Hierarchy 15
2.5 Runtime and Configuration Databases 15
2.6 Fault Tolerance 15
2.7 Redundancy 16
vi CONTENTS
2.8 Alarm Rationalization, Management, and Analysis 16
2.9 Incident Review and Replay 17
2.10 Data Quality 17
2.11 Operator Logbook and Shift Handover 18
2.12 Training 19
2.13 SC AD A User Permissions and AORs 19
2.14 Web Connection 19
2.15 SCADA Security 20
2.16 Human Factors Design in SCADA Systems 20
2.17 SCADA Standards 21
2.18 Pipeline Industry Applications 21
2.18.1 Leak Detection 22
2.18.2 Batch Tracking 22
2.18.3 Dynamic Pipeline Highlight 22
2.19 Communication Media 22
2.19.1 Cat5 Data Cable 22
2.19.2 LeasedLine 22
2.19.3 Microwave 23
2.19.4 Dial-UpLine 23
2.19.5 Optical Fiber 23
2.19.6 Satellite 23
2.20 Communications Infrastructure 23
2.21 Communications Integrity 24
2.22 RTUs and PLCs 24
2.23 Database 25
2.24 User-Defined Programs 25
2.25 RTU/PLC Integrity 25
References 26
3 Material Selection for Fracture Control 27
William Tyson
3.1 Overview of Fracture Control 27
3.2 Toughness Requixements: Initiation 28
3.3 Toughness Requirements: Propagation 29
3.4 Toughness Measurement 31
3.4.1 Toughness Measurement: Impact Tests 32
3.4.2 Toughness Measurement: /, CTOD, and CTOA 32
3.5 Current Status 33
References 34
4 Strain-Based Design of Pipelines 37
Nader Yoosef-Ghodsi
4.1 Introduction and Basic Concepts 37
4.1.1 Overview of Strain-Based Design 37
4.1.2 Deterministic versus Probabilistic Design
Methods 38
4.1.3 Limit States 38
4.1.4 Displacement Control versus Load Control 38
4.1.5 Strain-Based Design Applications 39
4.2 Strain Demand 39
4.2.1 Overview 39
4.2.2 Challenging Environments and Strain Demand 39
CONTENTS
4.2.3 Strain Levels and Analysis Considerations 39
4.3 Strain Capacity 41
4.3.1 Overview 41
4.3.2 Compressive Strain Capacity 42
4.3.3 Tensile Strain Capacity 43
4.4 Role of Full-Scale and Curved Wide Plate Testing 45
4.5 Summary 46
References 46
5 Stress-Based Design of Pipelines 49
Mavis Sika Okyere
5.1 Introduction 49
5.2 Design Pressure 49
5.2.1 Maximum Allowable Operating Pressure 49
5.2.2 Maximum Operating Pressure 50
5.2.3 Surge Pressure 50
5.2.4 Test Pressure 50
5.3 Design Factor 50
5.4 Determination of Components of Stress 51
5.4.1 Hoop and Radial Stresses 51
5.4.2 Longitudinal Stress 51
5.4.3 Shear Stress 55
5.4.4 Equivalent Stress 56
5.4.5 Limits of Calculated Stress 56
5.5 Fatigue 57
5.5.1 Fatigue Life 57
5.5.2 Fatigue Limit 57
5.5.3 S-/VCurve 57
5.6 Expansion and Flexibility 58
5.6.1 Flexibility and Stress Intensification Factors 58
5.7 Corrosion Allowance 59
5.7.1 Internal Corrosion Allowance 59
5.7.2 External Corrosion Allowance 59
5.7.3 Formulas 59
5.8 Pipeline Stiffness 59
5.8.1 Calculation of Pipeline Stiffness 59
5.8.2 Calculation of Induced Bending Moment 61
5.9 Pipeline Ovality 61
5.9.1 Brazier Effect 62
5.9.2 Ovality of a Buried Pipeline 62
5.10 Minimum Pipe Bend Radius 62
5.10.1 Minimum Pipe Bend Radius Calculation Based on
Concrete 62
5.10.2 Minimum Pipe Bend Radius Calculation Based on
Steel 62
5.10.3 Installation Condition 62
5.10.4 In-Service Condition 63
5.11 Pipeline Design for External Pressure 63
5.11.1 Buried Installation 63
5.11.2 Above-Ground or Unburied Installation 64
5.12 Check for Hydrotest Conditions 64
5.13 Summary 64
References 65
viii CONTENTS
6 Spiral Welded Pipes for Shallow Offshore Applications 67
Ayman Eltaher
6.1 Introduction 67
6.2 Limitations of the Technology Feasibility 68
6.3 Challenges of Offshore Applications 68
6.3.1 Design Challenges 68
6.3.2 Stress Analysis Challenges 68
6.3.3 Materials and Manufacturing Challenges 69
6.4 Typical Pipe Properties 70
6.5 Technology Qualification 70
6.6 Additional Resources 71
6.7 Summary 71
References 71
7 Residual Stress in Pipelines 73
Paul Prevey and Douglas Hornbach
7.1 Introduction 73
7.1.1 The Nature of Residual Stresses 73
7.1.2 Sources of Residual Stresses 74
7.2 The Influence of Residual Stresses on Performance 76
7.2.1 Fatigue 77
7.2.2 Stress Corrosion Cracking 78
7.2.3 Corrosion Fatigue 78
7.2.4 Effects of Cold Working and Microscopic Residual
Stresses 78
7.3 Residual Stress Measurement 79
7.3.1 Center Hole Drilling Method 80
7.3.2 Ring Core Method 80
7.3.3 Diffraction Methods 81
7.3.4 Synchrotron X-Ray and Neutron Diffraction: Füll
Stress Tensor Determination 84
7.3.5 Magnetic Barkhausen Noise Method 84
7.4 Control and Alteration of Residual Stresses 86
7.4.1 ShotPeening 86
7.4.2 Roller or Ball Burnishing and Low Plasticity
Burnishing 86
7.4.3 Laser Shock Peening 87
7.4.4 Thermal Stress Relief 87
7.5 Case Studies of the Effect of Residual Stress and Cold Work 87
7.5.1 Case Study 1: Restoration of the Fatigue
Performance of Corrosion and Fretting Damaged
4340 Steel 88
7.5.2 Case Study 2: Mitigating SCC in Stainless Steel
Weldments 91
7.5.3 Case Study 3: Mitigation of Sulfide Stress Cracking
in PI 10 Oil Field Couplings 91
7.5.4 Case Study 4: Improving Corrosion Fatigue
Performance and Damage Tolerance of 410
Stainless Steel 93
7.5.5 Case Study 5: Improving the Fatigue Performance
of Downhole Tubulär Components 95
References 96
CONTENTS
Pipeline/Soil Interaction Modeling in Support of Pipeline
Engineering Design and Integrity 99
Shawn Kenny and Paul Jukes
8.1 Introduction 99
8.2 Site Characterization and Geotechnical Engineering
in Relation to Pipeline System Response
Analysis 101
8.2.1 Overview 101
8.2.2 Pipeline Routing 102
8.2.3 Geotechnical Investigations 102
8.3 Pipeline/Soil Interaction Analysis and Design 103
8.3.1 Overview 103
8.3.2 Physical Modeling 103
8.3.3 Computational Engineering Tools 104
8.3.4 Guidance on Best Practice to Enhance
Computational Pipe/Soil Interaction
Analysis 108
8.3.5 Emerging Research 112
8.3.6 Soil Constitutive Models 121
8.3.7 Advancing the State of Art into Engineering
Practice through an Integrated Technology
Framework 129
Nomenclature 129
Acknowledgments 130
References 130
Human Factors 143
Lorna Harron
9.1 Introduction 143
9.2 What Is Human Factors ? 143
9.3 Life Cycle Approach to Human Factors 143
9.3.1 Example Case Study 144
9.4 Human Factors and Decision Making 144
9.4.1 Information Receipt 146
9.4.2 Information Processing 146
9.5 Application of Human Factors Guidance 149
9.6 Heuristics and Biases in Decision Making 150
9.6.1 Satisficing Heuristic 150
9.6.2 Cue Primacy and Anchoring 150
9.6.3 Selective Attention 150
9.6.4 Availability Heuristic 150
9.6.5 Representativeness Heuristic 151
9.6.6 Cognitive Tunneling 151
9.6.7 Confirmation Bias 151
9.6.8 FramingBias 151
9.6.9 Management of Decision-Making
Challenges 151
9.7 Human Factors Contribution to Incidents in
the Pipeline Industry 153
9.8 Human Factors Life Cycle Revisited 154
9.9 Summary 154
References 155
Bibliography 155
x CONTENTS
PART H MANUFACTURE, FABRICATION, AND CONSTRUCTION
10 Microstructure and Texture Development in Pipeline Steels 159
Roumen H. Petrov, John J. Jonas, Leo A.I. Kestens, and J. Malcolm Gray
10.1 Introduction 159
10.2 Short History of Pipeline Steel Development 160
10.2.1 Thermomechanically Controlled Processing of
Pipeline Steels 162
10.3 Texture Control in Pipeline Steels 172
10.3.1 Fractureof Pipeline Steels 175
10.3.2 Effect of Phase Transformation on the Texture
Components 177
10.3.3 Effect of Austenite Recrystallization on Plate
Texture 177
10.3.4 Effect of Austenite Pancaking on the Rolling
Texture 178
10.3.5 Effect of Finish Rolling in the Intercritical Region 181
10.4 Effect of Texture on In-Plane Anisotropy 182
10.5 Summary 182
Acknowledgments 183
References 183
11 Pipe Manufacture—Introduction 187
Gerhard Knauf and Axel Kulgemeyer
11.1 Pipe Manufacturing Background 187
11.2 Current Trends in Line Pipe Manufacturing 187
References 188
12 Pipe Manufacture—Longitudinal Submerged Are Welded Large
Diameter Pipe 189
Christoph Kalwa
12.1 Introduction 189
12.2 Manufacturing Process 189
12.3 Quality Control Procedures 191
12.4 Range of Grades and Dimensions 192
12.5 Typical Fields of Application 192
13 Pipe Manufacture—Spiral Pipe 195
Franz Martin Knoop
13.1 Manufacturing Process 195
13.2 Quality Control Procedures 198
13.3 Range of Grades and Dimensions 198
13.4 Typical Fields of Applicability 200
References 201
14 Pipe Manufacture—ERW Pipe 203
Holger Brauer and Hendrik Löbbe
14.1 Introduction 203
14.2 Manufacturing Process 203
14.3 Quality Control Procedures 204
14.3.1 Welding Line 205
CONTENTS
14.3.2 Finishing Line 206
14.3.3 Destructive Material Testing 208
14.4 Range of Grades and Dimensions 208
14.5 Typical Fields of Applicability 208
References 209
15 Pipe Manufacture—Seamless Tube and Pipe 211
Rolf Kümmerling and Klaus Kraemer
15.1 The Rolling Process 211
15.1.1 Introduction and History 211
15.1.2 Cross Rolling Technology 212
15.1.3 Püger Rolling 213
15.1.4 Plug Rolling 215
15.1.5 Mandrel Rolling 216
15.1.6 Forging 218
15.1.7 Size Rolling and Stretch Reducing 218
15.2 Further Processing 219
15.2.1 Heat Treatment 219
15.2.2 Quality and In-Process Checks 221
15.2.3 Finishing Lines 221
References 222
16 Major Standards for Line Pipe Manufacturing and Testing 223
Gerhard Knauf and Axel Kulgemeyer
16.1 API SPEC 5L/ISO 3183 223
16.2 CSA Z662-11: Oil and Gas Pipeline Systems 223
16.3 DNV-OS-F101-2012: Submarine Pipeline Systems 223
16.4 ISO 15156-1:2009: Petroleum and Natural Gas Industries—
Materials for Use in HzS-Containing Environments in
Oil and Gas Production 223
16.5 EFC Publication Number 16, Third Edition: Guidelines on
Materials Requirements for Carbon and Low-Alloy Steels for
H2S-Containing Environments in Oil and Gas Production 224
16.6 NACE TM0284 and TM0177 224
16.7 ISO 10893-11—2011 Non-Destructive Testing of Steel
Tubes—Part 11: Automated Ultrasonic Testing of the Weld
Seam of Welded Steel Tubes for the Detection of
Longitudinal and/or Transverse Imperfections 224
References 224
17 Design of Steels for Large Diameter Sour Service Pipelines 225
Nobuyuki Ishikawa
17.1 Introduction 225
17.2 Hydrogen-Induced Cracking of Linepipe Steel and Evaluation
Method 225
17.2.1 Hydrogen-Induced Cracking in Full-Scale Test 225
17.2.2 Standardized Laboratory Evaluation Method
for HIC 227
17.2.3 Mechanisms of Hydrogen-Induced Cracking 227
17.3 Material Design of Linepipe Steel for Sour Service 228
17.3.1 Effect ofNonmetallicInclusions 228
17.3.2 Effect of Center Segregation 229
xii CONTENTS
17.3.3 Effect of Plate Manufacturing Condition 229
References 230
18 Pipeline Welding from the Perspective of Safety and Integrity 233
David Dorling and James Gianetto
18.1 Introduction 233
18.2 Construction Welding Applications 234
18.2.1 Double-Joint Welding 234
18.2.2 Mainline Welding 234
18.2.3 Tie-In and Repair Welding 236
18.3 Nondestructive Inspection and Flaw Assessment 237
18.4 Welding Procedure and Weider Qualification 239
18.4.1 Welding Codes and Standards 239
18.4.2 Welding Procedures 239
18.4.3 Welding Procedure Specification 239
18.4.4 Procedure Qualification Record 240
18.4.5 Qualification of Weiders 240
18.5 Hydrogen Control in Welds and the Prevention
of Hydrogen-Assisted Cracking 240
18.6 Lmportant Considerations for Qualifying Welding Procedures
to a Strain-Based Design 242
18.7 Welding on In-Service Pipelines 243
18.8 Pipeline Incidents Arising from Welding Defects and Recent
Industry and Regulatory Preventative Action 245
Appendix 18.A: Abbreviations Used in This Chapter 247
Appendix 18.B: Regulations, Codes, and Standards 247
References 248
19 The Effect of Installation on Offshore Pipeline Integrity 253
Robert O Grady
19.1 Introduction 253
19.2 Installation Methods and Pipeline Behaviour During Installation 253
19.2.1 Pipeline Installation Loading and Failure Modes 253
19.2.2 S-Lay Method 254
19.2.3 J-Lay Method 256
19.2.4 Reel-Lay Method 256
19.3 Critical Factors Governing Installation 257
19.3.1 Vessel Restrictions 257
19.3.2 Pipeline Integrity Criteria 257
19.4 Installation Analysis and Design Methodologies 259
19.4.1 Global Installation Analysis 259
19.4.2 Methodologies 259
19.5 Monitoring the Installation Process Offshore 261
19.5.1 Monitoring Process and Remedial Action 261
19.5.2 Monitoring Analysis Software 261
19.6 Implications of Deeper Water on Installation 261
19.6.1 Increased Tension and Potential for Local Bückling 261
19.6.2 Plastic Strains 262
19.6.3 Prolonged Fatigue Exposure 262
19.6.4 Design Implications 262
Reference 262
Bibliography 262
CONTENTS
PART in THREATS TO INTEGRITY AND SAFETY
20 External Corrosion of Pipelines in Soil 267
Homero Castaneda and Omar Rosas
20.1 Introduction 267
20.2 Background 267
20.3 Critical Factors of Soil Corrosivity that Affect Pipelines 268
20.3.1 Soil Types and Resistivity 268
20.3.2 Water Coverage Due to Vapor Transportation and
Drainage 269
20.3.3 pHofSoils 270
20.3.4 Chlorides and Sulfates in Soils 270
20.3.5 Differential Aeration Corrosion Cells 271
20.3.6 Microorganisms in Soils 271
20.3.7 RedoxPotential 271
20.4 Identifying Corrosive Environments 271
20.5 Cathodic Protection and Stray Currents 272
References 273
21 Telluric Influence on Pipelines 275
David H. Boteler and Larisa Trichtchenko
21.1 Introduction 275
21.2 Review of the Existing Knowledge on Pipeline-Telluric
Interference 275
21.3 Geomagnetic Sources of Telluric Activity 276
21.4 Earth Resistivity Influence on Telluric Activity 278
21.5 Pipeline Response to Telluric Electric Fields 278
21.6 Telluric Hazard Assessment 279
21.6.1 Geomagnetic Activity 279
21.6.2 Earth Conductivity Structure 280
21.6.3 Pipeline Response 280
21.7 Mitigation/Compensation of Telluric Effects 281
21.8 Knowledge Gaps/Open Questions 283
21.9 Summary 283
Acknowledgments 285
References 285
22 Mechanical Damage in Pipelines: A Review of the Methods and
Improvements in Characterization, Evaluation, and Mitigation 289
Ming Gao and Ravi Krishnamurthy
22.1 Introduction 289
22.2 Current Status of In-Line Inspection (ELI) Technologies for
Mechanical Damage Characterization 290
22.2.1 Geometry (Caliper) Sensing Technologies 291
22.2.2 Coincident Damage Sensing (Dent with Metal
Loss) Technologies 292
22.2.3 Capabilities and Performance of the Current In-
Line-Inspection Technologies for Detection,
Discrimination, and Sizing of Mechanical Damage 293
22.2.4 Closing Remarks 298
22.3 Improved Technologies for In-Ditch Mechanical Damage
Characterization 301
xiv CONTENTS
22.3.1 In-Ditch Laserscan Technology 301
22.3.2 Application of the State-of-the-Art In-Ditch
Measurement Technology 305
22.4 Assessment of the Severity of Mechanical Damage 308
22.4.1 Regulatory and Industry Standard Guidance 308
22.4.2 Strain-Based Assessment Methods 310
22.4.3 A Combined Approach to Evaluate Dent with
Metal Loss 315
22.4.4 Fatigue Assessment of Dents 317
22.5 Mitigation and Repair 319
22.5.1 Improved Strain-Based Dent Severity Criteria -
Alternatives 320
22.5.2 Repair 321
22.6 Continuing Challenges 322
References 322
23 Progression of Pitting Corrosion and Structural Reliabiüty
of Welded Steel Pipelines 327
Robert E. Melchers
23.1 Introduction 327
23.2 Asset Management and Prediction 328
23.3 Pitting 328
23.3.1 Terminology 328
23.3.2 Initiation and Nucleation of Pits 329
23.3.3 Development of Pitting 329
23.3.4 Biological Influences 330
23.3.5 Trends in Corrosion with Time 330
23.4 Model for Long-Term Growth in Pit Depth 331
23.5 Factors Influencing Maximum Pit Depth Development 333
23.6 Structural Reliability 333
23.6.1 Formulation 333
23.6.2 Failure Conditions 334
23.7 Extreme Value Analysis for Maximum Pit Depth 334
23.7.1 The Gumbel Distribution 334
23.7.2 Dependence between Pit Depths 335
23.7.3 EV Distribution for Deep Pits 335
23.7.4 fmplications for Reliability Analysis 336
23.8 Pitting at Welds 336
23.8.1 Short-Term Exposures 336
23.8.2 Estimates of Long-Term Pitting Development 337
23.8.3 EV Statistics for Weld Pit Depth 338
23.9 Case Study—Water Injection Pipelines 338
23.10 Concluding Remarks 339
Acknowledgments 339
References 339
24 Sulfide Stress Cracking 343
Russell D. Kane
24.1 Introduction 343
24.2 What Is Sulfide Stress Cracking? 343
24.3 Basics of Sulfide Stress Cracking in Pipelines 343
24.4 Comparison of SSC to Other Sour Cracking Mechanisms 345
CONTENTS xv
24.5 Influence of Environmental Variables on SSC 346
24.5.1 Availability of Liquid Water 346
24.5.2 pH and H2S Partial Pressure 346
24.6 Influence of Metallurgical Variables on SSC in Steels 347
24.7 Use of Corrosion-Resistant Alloys to Resist SSC 348
References 351
25 Stress Corrosion Cracking of Steel Equipment in Ethanol Service 353
Russell D. Kane
25.1 Introduction 353
25.2 Factors Affecting Susceptibility to Ethanol SCC 353
25.2.1 Environmental Variables in FGE 354
25.2.2 Metallurgical Variables 355
25.2.3 Mechanical Variables 355
25.3 Occurrences and Consequences of eSCC 357
25.4 Guidelines for Identification, Mitigation, and Repair of eSCC 358
25.4.1 Identification 358
25.4.2 Inspection 358
25.4.3 Mitigation 359
25.5 Path Forward 360
References 360
Bibliography of Additional eSCC Papers 361
26 AC Corrosion 363
Lars Vendelbo Nielsen
26.1 Introduction 363
26.2 Basic Understanding 363
26.2.1 The Spread Resistance 365
26.2.2 The Effect of AC on DC Polarization 368
26.2.3 The Vicious Circle of AC Corrosion—Mechanistic
Approach 370
26.3 AC Corrosion Risk Assessment and Management 373
26.3.1 Criteria 373
26.3.2 Current Criteria 373
26.3.3 Mitigation Measures 374
26.3.4 Monitoring and Management 379
References 382
Bibliography 382
27 Microbiologically Influenced Corrosion 387
Brenda J. Little and Jason S. Lee
27 A Introduction 387
27.2 Requirements for Microbial Growth 388
27.2.1 Water 388
27.2.2 Electron Donors and Acceptors 388
27.2.3 Nutrients 389
27.3 Internal Corrosion 389
27.3.1 Production 389
27.3.2 Transmission 389
27.4 Testing 390
27.4.1 A Review of Testing Procedures 390
27.4.2 Current Procedures 391
27.4.3 Monitoring 391
xvi CONTENTS
27.4.4 Control 392
27.4.5 Alter Potential Electron Acceptors to Inhibit
Specific Groups of Bacteria 393
27.5 Extemal Corrosion 394
27.5.1 Buried Pipelines 394
27.5.2 Submerged Pipelines 395
27.6 Conclusions 395
Acknowledgments 395
References 395
28 Erosion-Corrosion in Oil and Gas Pipelines 399
Siamack A. Shirazi, Brenton S. McLaury, John R. Shadley,
Kenneth P. Roberts, Edmund F. Rybicki, Hernan E. Rincon,
Shokrollah Hassani, Faisal M. Al-Mutahar, and Gusai H. Al-Aithan
28.1 Introduction 399
28.2 Solid Particle Erosion 401
28.3 Erosion-Corrosion of Carbon Steel Piping in a C02
Environment with Sand 405
28.4 Erosion-Corrosion Modeling and Characterization of fron
Carbonate Erosivity 406
28.4.1 C02 Partial Pressure 407
28.4.2 pH 407
28.4.3 Temperature 407
28.4.4 Flow Velocity 407
28.4.5 Supersaturation 407
28.4.6 Erosion of Scale 407
28.4.7 Erosion-Corrosion 407
28.4.8 Erosion-Corrosion Model Development 408
28.5 Erosion-Corrosion of Corrosion-Resistant Alloys 410
28.5.1 Erosion-Corrosion of Carbon Steels versus CRAs 410
28.5.2 Erosion-Corrosion with CRAs under High
Erosivity Conditions 412
28.5.3 RepassivationofCRAs 413
28.5.4 Effect of Microstructure and Crystallography on
Erosion-Corrosion 416
28.5.5 Summary 416
28.6 Chemical Inhibition of Erosion-Corrosion 416
28.6.1 Effect of Sand Erosion on Chemical Inhibition 417
28.6.2 Modeling and Prediction of Inhibited Erosion-
Corrosion 417
28.7 Summary and Conclusions 419
Acknowledgments 419
References 419
29 Black Powder in Gas Transmission Pipelines 423
Abdelmounam M. Sherik
29.1 Introduction 423
29.2 Internal Corrosion of Gas Transmission Pipelines 425
29.2.1 Siderite-FeC03 (C02 Corrosion) 426
29.2.2 Iron Sulfides (H2S Corrosion) 426
29.2.3 Iron Oxides (02 Oxidation) 426
29.3 Analysis Techniques 427
29.4 Composition and Sources of Black Powder 428
CONTENTS
29.5 Physical and Mechanical Properties 429
29.6 Lmpacts on Operations 430
29.7 Black Powder Management Methods 430
29.7.1 Removal Methods 431
29.7.2 Prevention Methods 432
29.8 Guidance on Handling and Disposal of Black Powder 433
29.8.1 Workers Protection and Contamination
Control 434
29.9 Summary 434
Acknowledgments 435
References 435
PART IV PROTECTION
30 External Coatings 439
Doug Waslen
30.1 Introduction and Background 439
30.2 Coating Performance 439
30.2.1 Needs Assessment 439
30.3 Product Testing 441
30.3.1 Cathodic Disbondment Resistance 441
30.3.2 Adhesion 441
30.3.3 Flexibility 441
30.3.4 Aging 442
30.3.5 Temperature Rating 442
30.3.6 Damage Resistance 442
30.3.7 Cure 443
30.3.8 Electrical Isolation 443
30.4 Standards and Application Specification 443
30.4.1 Quality Assurance 443
30.5 Field-Applied Coatings 443
30.6 Coating Types and Application 444
30.6.1 Fusion Bond Epoxy 444
30.6.2 Extruded Olefins 444
30.6.3 Liquid Epoxy and Urethane 445
30.6.4 Composite Coatings 445
30.6.5 Girth Weld Coatings 445
30.6.6 Specialty Coatings 446
30.6.7 Repair Coatings 446
Reference 446
31 Thermoplastic Liners for Oilfleld Pipelines 447
Jim Mason
31.1 Introduction 447
31.2 Codes and Standards 447
31.3 The Installation Process 448
31.4 Important Mechanical Design Aspects 449
31.5 Liner Materials 451
31.6 Operating a Pipeline with a Liner 452
31.7 Lined Pipeline Systems—Application Examples 452
31.7.1 Liners in Hydrocarbon Flow Lines 453
xviii CONTENTS
31.7.2 Grooved PE Liners 453
31.7.3 Liners in a Reeled, Water Injection Pipeline 453
31.7.4 Liners in Sour Gas and Gas Condensate
Pipelines 453
31.7.5 PA11 Liners in Sour Gas Pipelines 454
References 454
32 Cathodic Protection 457
Sarah Leeds and John Leeds
32.1 Introduction 457
32.2 Historical Foundation of Cathodic Protection 457
32.3 Fundamentals of Cathodic Protection 458
32.3.1 Mechanism of Cathodic Protection 458
32.3.2 E-pH Pourbaix Diagram 460
32.4 How Cathodic Protection Is Applied 462
32.4.1 Sacrificial Anode Cathodic Protection System 462
32.4.2 Sacrificial Anode Design 463
32.4.3 Anode Material 463
32.4.4 Impressed Current System 463
32.4.5 Sacrificial Anode versus Impressed Current
Systems 466
32.5 Design Principles of Cathodic Protection 467
32.5.1 Current Requirement for a Cathodic Protection
System 467
32.5.2 What is the Most Economical Way for Supplying
Current? 467
32.5.3 How Is the Protective Current Distributed over the
Structure? 468
32.6 Protective Coatings and Cathodic Protection 468
32.6.1 Beneficial Effects of Cathodic Protection Used in
Conjunction with Coatings 469
32.6.2 Adverse Effects of Cathodic Protection Used in
Conjunction with Coatings 469
32.7 Monitoring Cathodic Protection Systems 470
32.7.1 Commissioning of Cathodic Protection System 470
32.7.2 Monitoring Test Stations (Test Points) 470
32.7.3 Annual Compliance Surveys 471
32.7.4 Direct Current Voltage Gradient Surveys—DCVG 471
32.7.5 %IR Severity 472
32.7.6 Coating Fault Gradient 475
32.7.7 Close Interval Potential Surveys - CIPS/CIS 475
32.7.8 Soil Resistivity 476
32.7.9 Corrosion Coupons 477
32.8 Cathodic Protection Criteria 478
32.8.1 -850 mV versus Cu/CuS04 with the Cathodic
Protection Current Applied Criterion 479
32.8.2 Polarized Potential of -850 mV Measured to a
Cu/CuS04 Reference Electrode Criterion 480
32.8.3 100 mV Polarization Criterion 480
32.8.4 Net Current Flow Criterion 481
32.8.5 Use of Criteria 481
References 482
CONTENTS xix
PART V INSPECTION AND MONITORING
33 Direct Assessment 487
John A. Beavers, Lynsay A. Bensman, and Angel R. Kowalski
33.1 Introduction 487
33.2 External Corrosion DA (ECDA) 488
33.2.1 Overview of Technique/Standard 488
33.2.2 Strengths 489
33.2.3 Limitations 489
33.2.4 Status of Standard 489
33.2.5 Context of Technique/Standard in Integrity
Management 489
33.2.6 Where ECDA Technique Is Headed 489
33.3 Stress Corrosion Cracking DA (SCCDA) 489
33.3.1 Overview of Technique/Standard 490
33.3.2 Strengths 491
33.3.3 Limitations 491
33.3.4 Status of Standard 491
33.3.5 Context of Technique/Standard in Integrity
Management 491
33.3.6 Where SCCDA Technique Is Headed 491
33.4 Internal Corrosion DA (ICDA) 491
33.4.1 Overview of Technique/Standard 492
33.4.2 Dry Gas ICDA 492
33.4.3 Wet Gas ICDA 492
33.4.4 Liquid Petroleum ICDA 492
33.4.5 Strengths 493
33.4.6 Limitations 493
33.4.7 Status of Standards 493
33.4.8 Context of Technique/Standard in Integrity
Management 493
33.4.9 Where ICDA Technique Is Headed 493
References 493
34 Internal Corrosion Monitoring Using Coupons and
ER Probes 495
Daniel E. Powell
34.1 Introduction—Corrosion Monitoring Using Coupons and ER
Probes 495
34.1.1 Corrosion—A Definition 496
34.1.2 Corrosion and Use of Coupons and ER Probes as
Integrity Management Tools 497
34.2 Corrosion Coupons and Electrical Resistance Corrosion
Probes 497
34.2.1 Metal Coupons 498
34.2.2 Electrical Resistance Probes 500
34.3 Placing Corrosion Monitoring Coupons or Electronic Probes
within Pipelines 504
34.3.1 Placement of the Corrosion Monitoring Point on a
Pipeline 504
34.3.2 Orientation of the Corrosion Monitoring Coupons
or Electronic Probes within a Pipeline 507
xx CONTENTS
34.4 Monitoring Results Drive Chemical Treatment and
Maintenance Pigging Programs 507
34.5 Relative Sensitivities of NDT versus Internal Corrosion
Monitoring Techniques 509
34.5.1 Precision of UT, RT, or MFL Nondestructive
Inspection Techniques 510
34.5.2 Typical Exposure Periods for Coupons or ER
Probes to Detect Active Corrosion 510
34.5.3 Relative Time for Coupons, ER Probes, or
Inspection Techniques to Detect Active
Corrosion 511
34.6 Fluid Sample Analysis to Complement and Verify
Monitoring Results 511
34.7 Summary 512
34.8 Definitions of Corrosion Monitoring Terms From
NACE 3T199 © NACE International 1999 513
References 513
35 In-Line Inspection (ILI) ( Intelligent Pigging ) 515
Neb I. Uzelac
35.1 Introduction 515
35.2 Place of ELI in Pipeline Integrity Management 515
35.3 Running ILI Tools 516
35.3.1 Tool Type Selection 516
35.3.2 Making Sure the Tool Fits the
Pipeline 516
35.3.3 Conducting the Survey 517
35.4 Types of ELI Tools and Their Purpose 517
35.4.1 Geometry (Deformation) Tools 517
35.4.2 Mapping/GPS Tools 518
35.4.3 Metal Loss Tools 519
35.4.4 Crack Detection 523
35.4.5 Other 526
35.5 Utilizing ILI Data/Verification 528
35.6 Integrating ELI Data 529
Appendix 35.A: Sample Pipeline Inspection Questionnaire
(Nonmandatory) 529
References 535
Bibliography: Journals, Conferences and Other Sources with ELI
Related Content 535
36 Eddy Current Testing in Pipeline Inspection 537
Konrad Reber
36.1 Standard Eddy Current Testing 537
36.1.1 Introduction 537
36.1.2 How Eddy Current Testing (ECT) Works 537
36.1.3 Limitations for Pipeline Inspection 538
36.2 Enhanced Eddy Current Testing 539
36.2.1 Remote Field Eddy Current Testing (RFEC) 539
36.2.2 Pulsed Eddy Current (PEC) Testing 539
36.2.3 Magnetic Eddy Current Testing (SLOFEC or MEC) 540
36.3 Applications for Pipeline Inspection 540
CONTENTS
36.3.1 Standard EC Applications 540
36.3.2 Remote Field and Low Frequency Testing 541
36.3.3 Pulsed Eddy Current Applications 541
36.3.4 Magnetic Eddy Current Testing (MEC, SLOFEC) 541
References 542
37 Unpiggable Pipelines 545
Tom Steinvoorte
31A Introduction 545
37.1.1 What Is an Unpiggable Pipeline? 545
37.1.2 The Main Challenges 547
37.2 Challenging Pipeline Inspection Approach 547
37.2.1 Pipeline Modification 547
37.2.2 Cable Operated Inspection 548
37.2.3 Modification of Existing Tools 548
37.2.4 Self-Propelled Inspection 548
37.2.5 Selection Process 549
37.3 Free Swimming ILI Tools for Challenging Pipeline Inspections 549
37.3.1 Bidirectional Inspection 549
37.3.2 ILI Tools for Launch Valve Operation 550
37.3.3 Low-Flow Low-Pressure Inspection of Gas
Pipelines 551
37.3.4 Multi-Diameter Inspection 551
37.4 Self-Propelled Inspection Solutions 551
37.4.1 UT-Based Crawlers 552
37.4.2 MFL-Based Crawlers 552
37.4.3 Other 553
References 554
Bibliography: Sources of Additional Information 555
38 In-the-Ditch Pipeline Inspection 557
Greg Zinter
38.1 Overview 557
38.2 Introduction to Nondestructive Examination of Pipelines 557
38.3 NDE and a Pipeline Integrity Program 557
38.3.1 Safety 558
38.3.2 Verification and Advancement of Technology 558
38.4 Pipeline Coatings 558
38.4.1 Asphalt or Coal Tar Enamel 558
38.4.2 Tape Wrap 559
38.4.3 Fusion Bonded Epoxy (FBE) 559
38.5 Types of Anomalies 559
38.5.1 Introduction 559
38.5.2 Volumetrie 559
38.5.3 Planar 561
38.5.4 Geometrie 561
38.6 NDE Measurement Technologies 561
38.6.1 Visual Assessment 562
38.6.2 Manual Measurement 562
38.6.3 Magnetic Particle Inspection 563
38.6.4 Ultrasonic Inspection (UT) 563
38.6.5 Laser Profilometry 564
xxii CONTENTS
38.7 Excavation Package 564
38.8 Data Collection 565
38.9 Conducting In-the-Ditch Assessment 566
38.10 Data Management 567
38.10.1 Quality Control 567
38.10.2 Reporting 567
38.11 Recent Technological Developments 568
38.11.1 Electromagnetic Acoustic Transducer (EMAT) 568
38.11.2 Structured Light 568
38.11.3 Ultrasonic 568
38.11.4 Eddy Current 568
38.12 Summary 568
Acknowledgments 568
Reference 569
Bibliography 569
39 Ultrasonic Monitoring of Pipeline Wall Thickness with
Autonomous, Wireless Sensor Networks 571
Frederic Cegla and Jon Allin
39.1 Introduction 571
39.2 The Physics of Ultrasonic Thickness Gauging 571
39.3 Autonomous Sensor and Network Considerations 572
39.4 Test Results 574
39.4.1 Lab Tests 574
39.4.2 Operating Experience 575
39.5 Applications 576
39.6 Summary 576
Acknowledgments 577
References 577
40 Flaw Assessment 579
Ted L. Anderson
40.1 Overview 579
40.1.1 Why Are Flaws Detrimental? 579
40.1.2 Material Properties for Flaw Assessment 579
40.1.3 Effect of Notch Acuity 580
40.2 Assessing Metal Loss 581
40.3 Crack Assessment 582
40.3.1 The Log-Secant Model for Longitudinal Cracks 582
40.3.2 The Failure Assessment Diagram (FAD) 583
40.3.3 Pressure Cycle Fatigue Analysis 585
40.4 Dents 585
References 586
41 Integrity Management of Pipeline Facilities 587
Keith G. Leewis
41.1 Overview 587
41.2 Outline 588
41.3 Scoping a Facilities Integrity Plan 588
41.3.1 Generic Threats 588
41.3.2 Interactive Threats 588
41.3.3 Root Cause 592
CONTENTS
41.3.4 Failure Frequency 593
41.4 Specific Facility Threats 593
41.4.1 Fatigue 593
41.4.2 Temperature 593
41.4.3 Complexity 593
41.5 Facility Safety Consequences 594
41.5.1 Environmental Consequences 5 94
41.5.2 Business Consequences 594
41.5.3 Reputation Consequences 594
41.6 Building a Facility Integrity Plan 595
41.7 Integrity Assurance 595
Bibliography: Essential Reading 596
PART VI MAINTENANCE, REPAIR, REPLACEMENT,
AND ABANDONMENT
42 Pipeline Cleaning 601
Randy L. Roberts
42.1 Introduction 601
42.2 Contaminates 601
42.3 Progressive Pigging 602
42.4 Pig Types 602
42.4.1 PolyFoam 602
42.4.2 Unibody 603
42.4.3 Steel Mandrel 603
42.4.4 Polyurethanes 603
42.5 Durometer 604
42.6 Mechanical and Liquid (Chemical) Cleaning 604
42.7 On-Line or Off-Line 604
42.8 Cleaning a Pipeline 604
42.8.1 Typical Pigging Procedures 605
42.8.2 Pipeline Cleaners and Diluents 605
42.9 How Clean Do I Need to Be? 606
42.9.1 Single Diameter Pipelines 606
42.9.2 Multi-Diameter Pipelines 606
42.10 Summary 607
References 607
43 Managing an Aging Pipeline Infrastructure 609
Brian N. Leis
43.1 Introduction 609
43.2 Background 609
43.3 Evolution of Line Pipe Steel, Pipe Making, and Pipeline
Construction 611
43.4 Pipeline System Expansion and the Implications for Older
Pipelines 614
43.4.1 System Expansion and Construction Era 614
43.4.2 Qualitative Assessment of Construction Era and
Incident Frequency 616
43.4.3 Quantitative Assessment of Construction Era and
Incident Frequency 616
xxiv CONTENTS
43.5 The Evolution of Pipeline Codes and Standards, and
Regulations 618
43.5.1 Pipeline Codes and Standards 618
43.5.2 Pipeline Regulations 619
43.6 Some Unique Aspects of Early and Vintage Pipelines 619
43.6.1 Early Construction Practices 620
43.6.2 Vintage Construction Practices—An Era of
Change 624
43.6.3 Summary and a Brief Look Forward at the
Modern Construction Era 627
43.7 Management Approach and Challenges 629
43.7.1 Threat Identification and Assessment 630
43.7.2 Inspection and Condition Monitoring 630
43.7.3 Life-Cycle Management 631
43.8 Closure 631
Acknowledgments 633
References 633
44 Pipeline Repair Using Full-Encirclement Repair Sleeves 635
William A. Bruce and John Kiefiier
44.1 Introduction 635
44.2 Background 635
44.3 Full-Encirclement Steel Sleeves 636
44.3.1 Type A Sleeves (Reinforcing) 636
44.3.2 Type B Sleeves (Pressure Containing) 641
44.3.3 Installation and Inspection of Full-Encirclement
Sleeves 646
44.3.4 Defect Repair Using Composite Materials 648
44.4 Comparison of Steel Sleeves and Fiber Reinforced Composite
Repairs 649
44.4.1 Applicability to Various Defect Types 649
44.4.2 Advantages and Disadvantages 650
44.5 Welding onto an In-Service Pipeline 651
44.5.1 Primary Concerns 651
44.5.2 Preventing Burnthrough 651
44.5.3 Preventing Hydrogen Cracking 652
44.6 Summary and Conclusions 654
References 654
45 Pipeline Repair 657
Robert Smyth and Buddy Powers
45.1 Introduction 657
45.2 Background 657
45.3 Safety 657
45.4 Protocols 658
45.5 Pipe Replacement 658
45.6 Grinding/Sanding 659
45.7 Full-Encirclement Steel Sleeves 660
45.8 Epoxy-Filled Shells 660
45.9 Steel Compression Sleeves 661
45.10 Composite Reinforcement Sleeves 661
45.10.1 Designing an Effective Composite Repair 661
CONTENTS
45.11 HotTapping 662
45.12 Direct Deposition Welding 662
45.13 Temporary Repair 662
45.14 Temporary Repairs of Leaks 664
45.15 Applicability to Various Defect Types 664
References 664
46 Pipeline Oil Spill Cleanup 665
Merv Fingas
46.1 Oil Spills and Pipelines: An Overview 665
46.1.1 How Often Do Spills Occur? 665
46.1.2 Pipelines 666
46.2 Response to Oil Spills 667
46.2.1 Oil Spill Contingency Plans 667
46.2.2 Activation of Contingency Plans 668
46.2.3 Training 669
46.2.4 Supporting Studies and Sensitivity Mapping 669
46.2.5 Oil Spill Cooperatives 669
46.2.6 The Effectiveness of Cleanup 669
46.3 Types of Oil and Their Properties 669
46.3.1 The Composition of Oil 669
46.3.2 Properties of Oil 670
46.4 Behavior of Oil in the Environment 670
46.4.1 An Overview of Weathering 670
46.4.2 Evaporation 670
46.4.3 Emulsification and Water Uptake 671
46.4.4 Biodegradation 671
46.4.5 Spreading 671
46.4.6 Movement of Oil Slicks on Water 671
46.4.7 Sinking and Over Washing 671
46.4.8 Spill Modeling 672
46.5 Analysis, Detection, and Remote Sensing of Oil Spills 672
46.5.1 Sampling and Laboratory Analysis 672
46.5.2 Detection and Surveillance 672
46.6 Containment on Water 672
46.6.1 Types of Booms and Their Construction 673
46.6.2 Uses of Booms 673
46.6.3 Boom Failures 673
46.6.4 Sorbent Booms and Barriers 673
46.7 Oil Recovery on Water 673
46.7.1 Skimmers 674
46.7.2 Sorbents 674
46.7.3 Manual Recovery 674
46.8 Separation, Pumping, Decontamination, and Disposal 674
46.8.1 Temporary Storage 675
46.8.2 Pumps 675
46.8.3 Vacuum Systems 675
46.8.4 Recovery from the Water Subsurface 675
46.8.5 Separation 675
46.8.6 Decontamination 675
46.8.7 Disposal 676
46.9 Spill-Treating Agents 676
46.10 In Situ Burning 676
xxvi CONTENTS
46.10.1 Advantages 676
46.10.2 Disadvantages 676
46.10.3 Ignition and What Will Burn 677
46.10.4 Burn Efficiency and Rates 677
46.10.5 Use of Containment 678
46.10.6 Emissions from Burning Oil 678
46.11 Shoreline Cleanup and Restoration 678
46.11.1 Behavior of Oil on Shorelines 678
46.11.2 Types of Shorelines 679
46.11.3 Shoreline Cleanup Assessment Technique (SCAT) 679
46.11.4 Cleanup Methods 679
46.11.5 Recommended Cleanup Methods 680
46.12 Oil Spills on Land 681
46.12.1 Behavior of Oil on Land 682
46.12.2 Movement of Oil on Land Surfaces 682
46.12.3 Habitats/Ecosystems 683
46.12.4 Cleanup of Surface Spills 684
46.12.5 Natural Recovery 684
46.12.6 Removal of Excess Oil 684
46.12.7 Other Cleanup Methods 685
46.12.8 Cleanup of Subsurface Spills 685
References 687
47 Pipeline Abandonment 689
Alan Pentney and Dean Carnes
47.1 What Is Pipeline Abandonment? 689
47.2 Abandonment Planning 689
47.2.1 Removal or Abandon in Place 689
47.2.2 Consultation 690
47.2.3 Abandonment Plan Outline 690
47.3 Procedures for Abandoning Pipelines and Related Facilities 691
47.3.1 Contamination Remediation 691
47.3.2 Pipeline Cleaning 691
47.3.3 Removal of Facilities and Apparatus 692
47.3.4 Water Bodies 693
47.3.5 Transportation and Utility Crossings 693
47.3.6 Right-of-Way Restoration 693
47.4 Post-Abandonment Physical Issues 694
47.4.1 Ground Subsidence 694
47.4.2 Pipe Deterioration and Collapse 694
47.4.3 Pipe Exposure 694
47.4.4 Water Conduit Effect 695
47.4.5 Slope Stability 695
47.5 Post-Abandonment Care 695
47.5.1 Monitoring and Maintenance 695
47.5.2 Land Use Changes 695
47.5.3 Liability 696
47.5.4 Financial Resources 696
References 696
CONTENTS
PARTVn RISK MANAGEMENT
48 Risk Management of Pipelines 699
Lynne C. Kaley and Kathleen O. Powers
48.1 Overview 699
48.1.1 Risk-Based Inspection for Pipelines 699
48.1.2 Scope 700
48.1.3 Risk Analysis 700
48.1.4 The RBI Approach 702
48.1.5 Risk Reduction and Inspection Planning 703
48.2 Qualitative and Quantitative RBI Approaches 703
48.2.1 API Industry Standards for RBI 703
48.2.2 Basic Risk Categories 705
48.2.3 Alternative RBI Approaches 705
48.2.4 Qualitative Approaches to RBI 706
48.2.5 Quantitative RBI Analysis 709
48.3 Development of Inspection Programs 712
48.3.1 Introduction 712
48.3.2 Inspection Techniques and Effectiveness 713
48.3.3 Damage Types 713
48.3.4 Probability of Detection 717
48.3.5 Reducing Risk through Inspection 717
48.4 Putting RBI into Practice 718
48.4.1 A Continuum of Approach 718
48.4.2 Qualitative versus Quantitative Examples 718
48.4.3 Qualitative Example 719
48.4.4 Quantitative Example 721
48.4.5 Optimizing the Inspection Program 723
48.4.6 Example Problem Conclusions 723
48.5 Conclusion: Evaluating RBI Methodologies 724
48.5.1 Summary 724
48.5.2 Ten Criteria for Selecting the Most Appropriate
Level of RBI 724
48.5.3 Justifying Costs 725
References 726
49 Offshore Pipeline Risk, Corrosion, and Integrity
Management 727
Binder Singh and Ben Poblete
49.1 Introduction 727
49.2 Challenges, Lessons, and Solutions 728
49.3 Life Cycle 733
49.3.1 Fitness for Corrosion Service 733
49.3.2 Conventional and Performance-Based Corrosion
Management 733
49.3.3 Corrosion Risk-Based Performance Goals 733
49.3.4 Inherent Safe Design (ISD) and Project Phases
of a Production Development 734
49.3.5 Link between ISD and Corrosion Management 735
49.3.6 Risk-Based Inspection and Monitoring 735
49.3.7 Life Extension 736
ii CONTENTS
49.4 Case Histories 736
49.4.1 Fit-for-Purpose Solutions 736
49.4.2 Methods and Techniques of Failure Analysis 737
49.4.3 Failure Mechanisms and Excursions outside
the Design Envelope 737
49.4.4 Corrosion and Integrity Risk 738
49.4.5 Corrosion Failures 739
49.4.6 Localized Corrosion Mechanisms in the Offshore
Oil and Gas Industry 740
49.4.7 Pictorial Gallery of Localized Corrosion
and Cracking 740
49.4.8 Failure Analysis Check Sheet Listing 742
49.5 Codes, Standards, Recommended Practices, and Regulations 744
49.6 Corrosion Risk Analysis, Inspection, and Monitoring
Methodologies 744
49.6.1 Risk and Reliability in the Corrosion Context 745
49.6.2 Safety Management Systems and Corrosion Risk 750
49.6.3 Formal or Structured Hazard or Risk Assessment 750
49.7 Summary: Recommendations and Future Strategies 755
Acknowledgments 755
References 755
Bibliography 756
PARTVin CASE HISTORIES
50 Bückling of Pipelines under Repair Sleeves: A Case Study—
Analysis of the Problem and Cost-Effective Solutions 761
Arnold L. Lewis II
50.1 Introduction 761
50.1.1 Statement of the Buckle/Collapse Problem 762
50.1.2 Observations 762
50.2 Study Conclusions 765
50.2.1 Conclusions for Sources of Hydrogen in an
Annulus of a Pipeline Repair Sleeve 765
50.2.2 Factors Affecting Hydrogen Permeation from
inside the Pipeline into an Annulus 765
50.2.3 Factors Affecting Hydrogen Permeation from
outside the Repair Sleeve into an Annulus 765
50.2.4 Factors Affecting the Rate of Annulus Pressure
Increase 766
50.2.5 Factors Affecting the Time Required for a Buckle/
Collapse Failure 766
50.2.6 Main Sources and Considerations for Hydrogen
Gas Trapped in the Annulus of a Pipeline Repair
Sleeve 766
50.2.7 Solutions to Mitigate Buckle/Collapse Failures
under Pipeline Repair Sleeves 767
50.3 Summary 767
Acknowledgment 767
References 767
CONTENTS
51 In-Line Inspection on an Unprecedented Scale 769
Stephan Brockhaus, Hubert Lindner, Tom Steinvoorte, Holger Hennerkes,
and Ljiljana Djapic-Oosterkamp
51.1 Introduction 769
51.2 Challenging Design and Operating Conditions 769
51.3 Combined Technologies for Reliable Inspection Results 769
51.3.1 Magnetic Flux Leakage 769
51.3.2 Eddy Current Technology 771
51.3.3 Synergetic Use of Magnetic Flux Leakage and
Eddy Current 772
51.4 Overcoming the Multi-Diameter Challenge 773
51.5 Overcoming the Challenge of High Product Flow Velocity in
the Pipeline 774
51.6 Overcoming the Distance Challenge: Tool Wear during the
Longest Continuous Inspection Run Ever Conducted 774
51.7 Summary 775
References 775
52 Deepwater, High-Pressure and Multidiameter Pipelines—A
Challenging In-Line Inspection Project 777
Hubert Lindner
52.1 Introduction 777
52.2 Project Requirements 777
52.3 Project Planning 778
52.3.1 Tool Development 778
52.3.2 Testing 778
52.3.3 Simulation of Pipeline Flow Conditions 778
52.3.4 Preparation of On-Site Activities 779
52.3.5 Preparation of Data Evaluation 779
52.3.6 Project Communication 779
52.4 Tool Design 779
52.5 Testing 779
52.6 Gauging and Inspection Runs 782
52.7 Summary 783
References 783
GLOSSARY
Part 1: Abbreviations 785
Part 2: Selected Terms 791
INDEX 793
|
any_adam_object | 1 |
author | Revie, R. Winston 1944- |
author_GND | (DE-588)136729088 |
author_facet | Revie, R. Winston 1944- |
author_role | aut |
author_sort | Revie, R. Winston 1944- |
author_variant | r w r rw rwr |
building | Verbundindex |
bvnumber | BV042606004 |
ctrlnum | (OCoLC)914342398 (DE-599)BVBBV042606004 |
dewey-full | 665.5/440289 |
dewey-hundreds | 600 - Technology (Applied sciences) |
dewey-ones | 665 - Industrial oils, fats, waxes & gases |
dewey-raw | 665.5/440289 |
dewey-search | 665.5/440289 |
dewey-sort | 3665.5 6440289 |
dewey-tens | 660 - Chemical engineering |
discipline | Chemie / Pharmazie |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01505nam a2200385 c 4500</leader><controlfield tag="001">BV042606004</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20160508 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">150609s2015 ad|| |||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781118216712</subfield><subfield code="9">9781-118-21671-2</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)914342398</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV042606004</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-29T</subfield><subfield code="a">DE-210</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">665.5/440289</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Revie, R. Winston</subfield><subfield code="d">1944-</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)136729088</subfield><subfield code="4">aut</subfield></datafield><datafield tag="240" ind1="1" ind2="0"><subfield code="a">Oil and gas pipelines (Hoboken, N.J.)</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Oil and gas pipelines</subfield><subfield code="b">integrity and safety handbook</subfield><subfield code="c">edited by R. Winston Revie</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Hoboken</subfield><subfield code="b">Wiley</subfield><subfield code="c">2015</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">xxxv, 816 S.</subfield><subfield code="b">Ill., graph. Darst.</subfield><subfield code="c">29 cm</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Includes bibliographical references and index</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Erdöl</subfield><subfield code="0">(DE-588)4015179-7</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Erdgas</subfield><subfield code="0">(DE-588)4015143-8</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Pipeline</subfield><subfield code="0">(DE-588)4125984-1</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Erdöl</subfield><subfield code="0">(DE-588)4015179-7</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Erdgas</subfield><subfield code="0">(DE-588)4015143-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="2"><subfield code="a">Pipeline</subfield><subfield code="0">(DE-588)4125984-1</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">HBZ Datenaustausch</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=028038969&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-028038969</subfield></datafield></record></collection> |
id | DE-604.BV042606004 |
illustrated | Illustrated |
indexdate | 2024-07-10T07:05:45Z |
institution | BVB |
isbn | 9781118216712 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-028038969 |
oclc_num | 914342398 |
open_access_boolean | |
owner | DE-29T DE-210 |
owner_facet | DE-29T DE-210 |
physical | xxxv, 816 S. Ill., graph. Darst. 29 cm |
publishDate | 2015 |
publishDateSearch | 2015 |
publishDateSort | 2015 |
publisher | Wiley |
record_format | marc |
spelling | Revie, R. Winston 1944- Verfasser (DE-588)136729088 aut Oil and gas pipelines (Hoboken, N.J.) Oil and gas pipelines integrity and safety handbook edited by R. Winston Revie Hoboken Wiley 2015 xxxv, 816 S. Ill., graph. Darst. 29 cm txt rdacontent n rdamedia nc rdacarrier Includes bibliographical references and index Erdöl (DE-588)4015179-7 gnd rswk-swf Erdgas (DE-588)4015143-8 gnd rswk-swf Pipeline (DE-588)4125984-1 gnd rswk-swf Erdöl (DE-588)4015179-7 s Erdgas (DE-588)4015143-8 s Pipeline (DE-588)4125984-1 s DE-604 HBZ Datenaustausch application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=028038969&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis |
spellingShingle | Revie, R. Winston 1944- Oil and gas pipelines integrity and safety handbook Erdöl (DE-588)4015179-7 gnd Erdgas (DE-588)4015143-8 gnd Pipeline (DE-588)4125984-1 gnd |
subject_GND | (DE-588)4015179-7 (DE-588)4015143-8 (DE-588)4125984-1 |
title | Oil and gas pipelines integrity and safety handbook |
title_alt | Oil and gas pipelines (Hoboken, N.J.) |
title_auth | Oil and gas pipelines integrity and safety handbook |
title_exact_search | Oil and gas pipelines integrity and safety handbook |
title_full | Oil and gas pipelines integrity and safety handbook edited by R. Winston Revie |
title_fullStr | Oil and gas pipelines integrity and safety handbook edited by R. Winston Revie |
title_full_unstemmed | Oil and gas pipelines integrity and safety handbook edited by R. Winston Revie |
title_short | Oil and gas pipelines |
title_sort | oil and gas pipelines integrity and safety handbook |
title_sub | integrity and safety handbook |
topic | Erdöl (DE-588)4015179-7 gnd Erdgas (DE-588)4015143-8 gnd Pipeline (DE-588)4125984-1 gnd |
topic_facet | Erdöl Erdgas Pipeline |
url | http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=028038969&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
work_keys_str_mv | AT revierwinston oilandgaspipelineshobokennj AT revierwinston oilandgaspipelinesintegrityandsafetyhandbook |