The quadratic reciprocity law: a collection of classical proofs
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Abschlussarbeit Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Cham
Birkhäuser Springer
2015
|
Schlagworte: | |
Online-Zugang: | BTU01 FRO01 TUM01 UBM01 UBT01 UBW01 UPA01 Volltext Inhaltsverzeichnis Abstract |
Beschreibung: | 1 Online-Ressource (XIV, 172 S.) 1 illus |
ISBN: | 9783319162836 |
DOI: | 10.1007/978-3-319-16283-6 |
Internformat
MARC
LEADER | 00000nmm a2200000zc 4500 | ||
---|---|---|---|
001 | BV042592155 | ||
003 | DE-604 | ||
005 | 20200930 | ||
006 | a m||| 00||| | ||
007 | cr|uuu---uuuuu | ||
008 | 150602s2015 |||| o||u| ||||||eng d | ||
020 | |a 9783319162836 |c Online |9 978-3-319-16283-6 | ||
024 | 7 | |a 10.1007/978-3-319-16283-6 |2 doi | |
035 | |a (OCoLC)911205517 | ||
035 | |a (DE-599)BVBBV042592155 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-91 |a DE-19 |a DE-703 |a DE-20 |a DE-739 |a DE-634 |a DE-861 |a DE-83 | ||
082 | 0 | |a 512.7 |2 23 | |
084 | |a SG 590 |0 (DE-625)143069: |2 rvk | ||
084 | |a MAT 000 |2 stub | ||
100 | 1 | |a Baumgart, Oswald |e Verfasser |4 aut | |
240 | 1 | 0 | |a Über das quadratische Reciprocitätsgesetz |
245 | 1 | 0 | |a The quadratic reciprocity law |b a collection of classical proofs |c Oswald Baumgart |
264 | 1 | |a Cham |b Birkhäuser Springer |c 2015 | |
300 | |a 1 Online-Ressource (XIV, 172 S.) |b 1 illus | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
502 | |a Zugl.: Göttingen, Univ., Diss., 1885 u.d.T.: Baumgart, Oswald: Über das quadratische Reciprocitätsgesetz | ||
650 | 4 | |a Mathematics | |
650 | 4 | |a Number theory | |
650 | 4 | |a Number Theory | |
650 | 4 | |a Mathematik | |
650 | 0 | 7 | |a Algebraische Zahlentheorie |0 (DE-588)4001170-7 |2 gnd |9 rswk-swf |
655 | 7 | |0 (DE-588)4113937-9 |a Hochschulschrift |2 gnd-content | |
689 | 0 | 0 | |a Algebraische Zahlentheorie |0 (DE-588)4001170-7 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
776 | 0 | 8 | |i Erscheint auch als |n Druckausgabe |z 978-3-319-16282-9 |
856 | 4 | 0 | |u https://doi.org/10.1007/978-3-319-16283-6 |x Verlag |3 Volltext |
856 | 4 | 2 | |m Springer Fremddatenuebernahme |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=028025367&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
856 | 4 | 2 | |m Springer Fremddatenuebernahme |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=028025367&sequence=000003&line_number=0002&func_code=DB_RECORDS&service_type=MEDIA |3 Abstract |
912 | |a ZDB-2-SMA | ||
940 | 1 | |q UBY_PDA_SMA | |
940 | 1 | |q ZDB-2-SMA_2015 | |
999 | |a oai:aleph.bib-bvb.de:BVB01-028025367 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
966 | e | |u https://doi.org/10.1007/978-3-319-16283-6 |l BTU01 |p ZDB-2-SMA |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1007/978-3-319-16283-6 |l FRO01 |p ZDB-2-SMA |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1007/978-3-319-16283-6 |l TUM01 |p ZDB-2-SMA |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1007/978-3-319-16283-6 |l UBM01 |p ZDB-2-SMA |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1007/978-3-319-16283-6 |l UBT01 |p ZDB-2-SMA |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1007/978-3-319-16283-6 |l UBW01 |p ZDB-2-SMA |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1007/978-3-319-16283-6 |l UPA01 |p ZDB-2-SMA |x Verlag |3 Volltext |
Datensatz im Suchindex
_version_ | 1804174754859450368 |
---|---|
adam_text | THE QUADRATIC RECIPROCITY LAW
/ BAUMGART, OSWALD
: 2015
TABLE OF CONTENTS / INHALTSVERZEICHNIS
TRANSLATOR’S PREFACE
BAUMGART S THESIS
INTRODUCTION
FIRST PART: 1. FROM FERMAT TO LEGENDRE
2. GAUSS S PROOF BY MATHEMATICAL INDUCTION
3. PROOF BY REDUCTION
4. EISENSTEIN S PROOF USING COMPLEX ANALYSIS
5. PROOFS USING RESULTS FROM CYCLOTOMY
6. PROOFS BASED ON THE THEORY OF QUADRATIC FORMS
7. THE SUPPLEMENTARY LAWS
8. ALGORITHMS FOR DETERMINING THE QUADRATIC CHARACTER
SECOND PART: 9. GAUSS S PROOF BY INDUCTION
10. PROOFS BY REDUCTION
11. EISENSTEIN S PROOFS USING COMPLEX ANALYSIS
12. PROOFS USING RESULTS FROM CYCLOTOMY
13. PROOFS BASED ON THE THEORY OF QUADRATIC FORMS
FINAL COMMENTS
PROOFS OF THE QUADRATIC RECIPROCITY LAW
AUTHOR INDEX
SUBJECT INDEX
DIESES SCHRIFTSTUECK WURDE MASCHINELL ERZEUGT.
THE QUADRATIC RECIPROCITY LAW
/ BAUMGART, OSWALD
: 2015
ABSTRACT / INHALTSTEXT
THIS BOOK IS THE ENGLISH TRANSLATION OF BAUMGART’S THESIS ON THE EARLY
PROOFS OF THE QUADRATIC RECIPROCITY LAW (“UEBER DAS QUADRATISCHE
RECIPROCITAETSGESETZ. EINE VERGLEICHENDE DARSTELLUNG DER BEWEISE”),
FIRST PUBLISHED IN 1885. IT IS DIVIDED INTO TWO PARTS. THE FIRST PART
PRESENTS A VERY BRIEF HISTORY OF THE DEVELOPMENT OF NUMBER THEORY UP TO
LEGENDRE, AS WELL AS DETAILED DESCRIPTIONS OF SEVERAL EARLY PROOFS OF
THE QUADRATIC RECIPROCITY LAW. THE SECOND PART HIGHLIGHTS BAUMGART’S
COMPARISONS OF THE PRINCIPLES BEHIND THESE PROOFS. A CURRENT LIST OF ALL
KNOWN PROOFS OF THE QUADRATIC RECIPROCITY LAW, WITH COMPLETE REFERENCES,
IS PROVIDED IN THE APPENDIX. THIS BOOK WILL APPEAL TO ALL READERS
INTERESTED IN ELEMENTARY NUMBER THEORY AND THE HISTORY OF NUMBER THEORY
DIESES SCHRIFTSTUECK WURDE MASCHINELL ERZEUGT.
|
any_adam_object | 1 |
author | Baumgart, Oswald |
author_facet | Baumgart, Oswald |
author_role | aut |
author_sort | Baumgart, Oswald |
author_variant | o b ob |
building | Verbundindex |
bvnumber | BV042592155 |
classification_rvk | SG 590 |
classification_tum | MAT 000 |
collection | ZDB-2-SMA |
ctrlnum | (OCoLC)911205517 (DE-599)BVBBV042592155 |
dewey-full | 512.7 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 512 - Algebra |
dewey-raw | 512.7 |
dewey-search | 512.7 |
dewey-sort | 3512.7 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
doi_str_mv | 10.1007/978-3-319-16283-6 |
format | Thesis Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03025nmm a2200613zc 4500</leader><controlfield tag="001">BV042592155</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20200930 </controlfield><controlfield tag="006">a m||| 00||| </controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">150602s2015 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783319162836</subfield><subfield code="c">Online</subfield><subfield code="9">978-3-319-16283-6</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/978-3-319-16283-6</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)911205517</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV042592155</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-91</subfield><subfield code="a">DE-19</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-20</subfield><subfield code="a">DE-739</subfield><subfield code="a">DE-634</subfield><subfield code="a">DE-861</subfield><subfield code="a">DE-83</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">512.7</subfield><subfield code="2">23</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SG 590</subfield><subfield code="0">(DE-625)143069:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 000</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Baumgart, Oswald</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="240" ind1="1" ind2="0"><subfield code="a">Über das quadratische Reciprocitätsgesetz</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">The quadratic reciprocity law</subfield><subfield code="b">a collection of classical proofs</subfield><subfield code="c">Oswald Baumgart</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Cham</subfield><subfield code="b">Birkhäuser Springer</subfield><subfield code="c">2015</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (XIV, 172 S.)</subfield><subfield code="b">1 illus</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="502" ind1=" " ind2=" "><subfield code="a">Zugl.: Göttingen, Univ., Diss., 1885 u.d.T.: Baumgart, Oswald: Über das quadratische Reciprocitätsgesetz</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Number theory</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Number Theory</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematik</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Algebraische Zahlentheorie</subfield><subfield code="0">(DE-588)4001170-7</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="655" ind1=" " ind2="7"><subfield code="0">(DE-588)4113937-9</subfield><subfield code="a">Hochschulschrift</subfield><subfield code="2">gnd-content</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Algebraische Zahlentheorie</subfield><subfield code="0">(DE-588)4001170-7</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druckausgabe</subfield><subfield code="z">978-3-319-16282-9</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1007/978-3-319-16283-6</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">Springer Fremddatenuebernahme</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=028025367&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">Springer Fremddatenuebernahme</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=028025367&sequence=000003&line_number=0002&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Abstract</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-2-SMA</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">UBY_PDA_SMA</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">ZDB-2-SMA_2015</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-028025367</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-3-319-16283-6</subfield><subfield code="l">BTU01</subfield><subfield code="p">ZDB-2-SMA</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-3-319-16283-6</subfield><subfield code="l">FRO01</subfield><subfield code="p">ZDB-2-SMA</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-3-319-16283-6</subfield><subfield code="l">TUM01</subfield><subfield code="p">ZDB-2-SMA</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-3-319-16283-6</subfield><subfield code="l">UBM01</subfield><subfield code="p">ZDB-2-SMA</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-3-319-16283-6</subfield><subfield code="l">UBT01</subfield><subfield code="p">ZDB-2-SMA</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-3-319-16283-6</subfield><subfield code="l">UBW01</subfield><subfield code="p">ZDB-2-SMA</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-3-319-16283-6</subfield><subfield code="l">UPA01</subfield><subfield code="p">ZDB-2-SMA</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
genre | (DE-588)4113937-9 Hochschulschrift gnd-content |
genre_facet | Hochschulschrift |
id | DE-604.BV042592155 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T07:05:25Z |
institution | BVB |
isbn | 9783319162836 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-028025367 |
oclc_num | 911205517 |
open_access_boolean | |
owner | DE-91 DE-BY-TUM DE-19 DE-BY-UBM DE-703 DE-20 DE-739 DE-634 DE-861 DE-83 |
owner_facet | DE-91 DE-BY-TUM DE-19 DE-BY-UBM DE-703 DE-20 DE-739 DE-634 DE-861 DE-83 |
physical | 1 Online-Ressource (XIV, 172 S.) 1 illus |
psigel | ZDB-2-SMA UBY_PDA_SMA ZDB-2-SMA_2015 |
publishDate | 2015 |
publishDateSearch | 2015 |
publishDateSort | 2015 |
publisher | Birkhäuser Springer |
record_format | marc |
spelling | Baumgart, Oswald Verfasser aut Über das quadratische Reciprocitätsgesetz The quadratic reciprocity law a collection of classical proofs Oswald Baumgart Cham Birkhäuser Springer 2015 1 Online-Ressource (XIV, 172 S.) 1 illus txt rdacontent c rdamedia cr rdacarrier Zugl.: Göttingen, Univ., Diss., 1885 u.d.T.: Baumgart, Oswald: Über das quadratische Reciprocitätsgesetz Mathematics Number theory Number Theory Mathematik Algebraische Zahlentheorie (DE-588)4001170-7 gnd rswk-swf (DE-588)4113937-9 Hochschulschrift gnd-content Algebraische Zahlentheorie (DE-588)4001170-7 s 1\p DE-604 Erscheint auch als Druckausgabe 978-3-319-16282-9 https://doi.org/10.1007/978-3-319-16283-6 Verlag Volltext Springer Fremddatenuebernahme application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=028025367&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis Springer Fremddatenuebernahme application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=028025367&sequence=000003&line_number=0002&func_code=DB_RECORDS&service_type=MEDIA Abstract 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Baumgart, Oswald The quadratic reciprocity law a collection of classical proofs Mathematics Number theory Number Theory Mathematik Algebraische Zahlentheorie (DE-588)4001170-7 gnd |
subject_GND | (DE-588)4001170-7 (DE-588)4113937-9 |
title | The quadratic reciprocity law a collection of classical proofs |
title_alt | Über das quadratische Reciprocitätsgesetz |
title_auth | The quadratic reciprocity law a collection of classical proofs |
title_exact_search | The quadratic reciprocity law a collection of classical proofs |
title_full | The quadratic reciprocity law a collection of classical proofs Oswald Baumgart |
title_fullStr | The quadratic reciprocity law a collection of classical proofs Oswald Baumgart |
title_full_unstemmed | The quadratic reciprocity law a collection of classical proofs Oswald Baumgart |
title_short | The quadratic reciprocity law |
title_sort | the quadratic reciprocity law a collection of classical proofs |
title_sub | a collection of classical proofs |
topic | Mathematics Number theory Number Theory Mathematik Algebraische Zahlentheorie (DE-588)4001170-7 gnd |
topic_facet | Mathematics Number theory Number Theory Mathematik Algebraische Zahlentheorie Hochschulschrift |
url | https://doi.org/10.1007/978-3-319-16283-6 http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=028025367&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=028025367&sequence=000003&line_number=0002&func_code=DB_RECORDS&service_type=MEDIA |
work_keys_str_mv | AT baumgartoswald uberdasquadratischereciprocitatsgesetz AT baumgartoswald thequadraticreciprocitylawacollectionofclassicalproofs |