Asymptotic geometric analysis: proceedings of the Fall 2010 Fields Institute Thematic Program
Asymptotic Geometric Analysis is concerned with the geometric and linear properties of finite dimensional objects, normed spaces, and convex bodies, especially with the asymptotics of their various quantitative parameters as the dimension tends to infinity. The deep geometric, probabilistic, and com...
Gespeichert in:
Format: | Buch |
---|---|
Sprache: | English |
Veröffentlicht: |
New York, NY [u.a.]
Springer
2013
|
Schriftenreihe: | Fields Institute Communications
68 |
Schlagworte: | |
Online-Zugang: | Inhaltsverzeichnis Inhaltstext |
Zusammenfassung: | Asymptotic Geometric Analysis is concerned with the geometric and linear properties of finite dimensional objects, normed spaces, and convex bodies, especially with the asymptotics of their various quantitative parameters as the dimension tends to infinity. The deep geometric, probabilistic, and combinatorial methods developed here are used outside the field in many areas of mathematics and mathematical sciences. The Fields Institute Thematic Program in the Fall of 2010 continued an established tradition of previous large-scale programs devoted to the same general research direction. The main directions of the program included:* Asymptotic theory of convexity and normed spaces* Concentration of measure and isoperimetric inequalities, optimal transportation approach* Applications of the concept of concentration* Connections with transformation groups and Ramsey theory* Geometrization of probability* Random matrices* Connection with asymptotic combinatorics and complexity theoryThese directions are represented in this volume and reflect the present state of this important area of research. It will be of benefit to researchers working in a wide range of mathematical sciences-in particular functional analysis, combinatorics, convex geometry, dynamical systems, operator algebras, and computer science |
Beschreibung: | Literaturangaben |
Beschreibung: | X, 395 S. graph. Darst. |
ISBN: | 9781461464051 9781461464068 |
Internformat
MARC
LEADER | 00000nam a2200000 cb4500 | ||
---|---|---|---|
001 | BV042560135 | ||
003 | DE-604 | ||
007 | t | ||
008 | 150515s2013 d||| |||| 00||| eng d | ||
010 | |a 2012956543 | ||
020 | |a 9781461464051 |9 978-1-4614-6405-1 | ||
020 | |a 9781461464068 |9 978-146-146-406-8 | ||
035 | |a (OCoLC)852498034 | ||
035 | |a (DE-599)OBVAC10779593 | ||
040 | |a DE-604 |b ger | ||
041 | 0 | |a eng | |
049 | |a DE-188 | ||
050 | 0 | |a QA360 | |
084 | |a SD 2010 |0 (DE-625)142744: |2 rvk | ||
245 | 1 | 0 | |a Asymptotic geometric analysis |b proceedings of the Fall 2010 Fields Institute Thematic Program |c Monika Ludwig ... eds. |
264 | 1 | |a New York, NY [u.a.] |b Springer |c 2013 | |
300 | |a X, 395 S. |b graph. Darst. | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
490 | 1 | |a Fields Institute Communications |v 68 | |
500 | |a Literaturangaben | ||
520 | 1 | |a Asymptotic Geometric Analysis is concerned with the geometric and linear properties of finite dimensional objects, normed spaces, and convex bodies, especially with the asymptotics of their various quantitative parameters as the dimension tends to infinity. The deep geometric, probabilistic, and combinatorial methods developed here are used outside the field in many areas of mathematics and mathematical sciences. The Fields Institute Thematic Program in the Fall of 2010 continued an established tradition of previous large-scale programs devoted to the same general research direction. The main directions of the program included:* Asymptotic theory of convexity and normed spaces* Concentration of measure and isoperimetric inequalities, optimal transportation approach* Applications of the concept of concentration* Connections with transformation groups and Ramsey theory* Geometrization of probability* Random matrices* Connection with asymptotic combinatorics and complexity theoryThese directions are represented in this volume and reflect the present state of this important area of research. It will be of benefit to researchers working in a wide range of mathematical sciences-in particular functional analysis, combinatorics, convex geometry, dynamical systems, operator algebras, and computer science | |
650 | 0 | 7 | |a Geometrie |0 (DE-588)4020236-7 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Asymptotik |0 (DE-588)4126634-1 |2 gnd |9 rswk-swf |
655 | 7 | |0 (DE-588)4143413-4 |a Aufsatzsammlung |2 gnd-content | |
689 | 0 | 0 | |a Geometrie |0 (DE-588)4020236-7 |D s |
689 | 0 | 1 | |a Asymptotik |0 (DE-588)4126634-1 |D s |
689 | 0 | |5 DE-604 | |
700 | 1 | |a Ludwig, Monika |d 1966- |e Sonstige |0 (DE-588)136244912 |4 oth | |
710 | 2 | |a Fields Institute for Research in Mathematical Sciences |e Sonstige |0 (DE-588)5098483-4 |4 oth | |
830 | 0 | |a Fields Institute Communications |v 68 |w (DE-604)BV035418374 |9 68 | |
856 | 4 | |m DE-601 |q pdf/application |u http://www.gbv.de/dms/tib-ub-hannover/745206719.pdf |3 Inhaltsverzeichnis | |
856 | 4 | |m DE-601 |q pdf/application |u http://zbmath.org/?q=an:1262.00011 |y Zentralblatt MATH |3 Inhaltstext |
Datensatz im Suchindex
_version_ | 1805076539010711552 |
---|---|
adam_text | |
any_adam_object | |
author_GND | (DE-588)136244912 |
building | Verbundindex |
bvnumber | BV042560135 |
callnumber-first | Q - Science |
callnumber-label | QA360 |
callnumber-raw | QA360 |
callnumber-search | QA360 |
callnumber-sort | QA 3360 |
callnumber-subject | QA - Mathematics |
classification_rvk | SD 2010 |
ctrlnum | (OCoLC)852498034 (DE-599)OBVAC10779593 |
discipline | Mathematik |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>00000nam a2200000 cb4500</leader><controlfield tag="001">BV042560135</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">150515s2013 d||| |||| 00||| eng d</controlfield><datafield tag="010" ind1=" " ind2=" "><subfield code="a">2012956543</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781461464051</subfield><subfield code="9">978-1-4614-6405-1</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781461464068</subfield><subfield code="9">978-146-146-406-8</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)852498034</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)OBVAC10779593</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-188</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QA360</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SD 2010</subfield><subfield code="0">(DE-625)142744:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Asymptotic geometric analysis</subfield><subfield code="b">proceedings of the Fall 2010 Fields Institute Thematic Program</subfield><subfield code="c">Monika Ludwig ... eds.</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">New York, NY [u.a.]</subfield><subfield code="b">Springer</subfield><subfield code="c">2013</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">X, 395 S.</subfield><subfield code="b">graph. Darst.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Fields Institute Communications</subfield><subfield code="v">68</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Literaturangaben</subfield></datafield><datafield tag="520" ind1="1" ind2=" "><subfield code="a">Asymptotic Geometric Analysis is concerned with the geometric and linear properties of finite dimensional objects, normed spaces, and convex bodies, especially with the asymptotics of their various quantitative parameters as the dimension tends to infinity. The deep geometric, probabilistic, and combinatorial methods developed here are used outside the field in many areas of mathematics and mathematical sciences. The Fields Institute Thematic Program in the Fall of 2010 continued an established tradition of previous large-scale programs devoted to the same general research direction. The main directions of the program included:* Asymptotic theory of convexity and normed spaces* Concentration of measure and isoperimetric inequalities, optimal transportation approach* Applications of the concept of concentration* Connections with transformation groups and Ramsey theory* Geometrization of probability* Random matrices* Connection with asymptotic combinatorics and complexity theoryThese directions are represented in this volume and reflect the present state of this important area of research. It will be of benefit to researchers working in a wide range of mathematical sciences-in particular functional analysis, combinatorics, convex geometry, dynamical systems, operator algebras, and computer science</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Geometrie</subfield><subfield code="0">(DE-588)4020236-7</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Asymptotik</subfield><subfield code="0">(DE-588)4126634-1</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="655" ind1=" " ind2="7"><subfield code="0">(DE-588)4143413-4</subfield><subfield code="a">Aufsatzsammlung</subfield><subfield code="2">gnd-content</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Geometrie</subfield><subfield code="0">(DE-588)4020236-7</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Asymptotik</subfield><subfield code="0">(DE-588)4126634-1</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Ludwig, Monika</subfield><subfield code="d">1966-</subfield><subfield code="e">Sonstige</subfield><subfield code="0">(DE-588)136244912</subfield><subfield code="4">oth</subfield></datafield><datafield tag="710" ind1="2" ind2=" "><subfield code="a">Fields Institute for Research in Mathematical Sciences</subfield><subfield code="e">Sonstige</subfield><subfield code="0">(DE-588)5098483-4</subfield><subfield code="4">oth</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">Fields Institute Communications</subfield><subfield code="v">68</subfield><subfield code="w">(DE-604)BV035418374</subfield><subfield code="9">68</subfield></datafield><datafield tag="856" ind1="4" ind2=" "><subfield code="m">DE-601</subfield><subfield code="q">pdf/application</subfield><subfield code="u">http://www.gbv.de/dms/tib-ub-hannover/745206719.pdf</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="856" ind1="4" ind2=" "><subfield code="m">DE-601</subfield><subfield code="q">pdf/application</subfield><subfield code="u">http://zbmath.org/?q=an:1262.00011</subfield><subfield code="y">Zentralblatt MATH</subfield><subfield code="3">Inhaltstext</subfield></datafield></record></collection> |
genre | (DE-588)4143413-4 Aufsatzsammlung gnd-content |
genre_facet | Aufsatzsammlung |
id | DE-604.BV042560135 |
illustrated | Illustrated |
indexdate | 2024-07-20T05:58:54Z |
institution | BVB |
institution_GND | (DE-588)5098483-4 |
isbn | 9781461464051 9781461464068 |
language | English |
lccn | 2012956543 |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-027993851 |
oclc_num | 852498034 |
open_access_boolean | |
owner | DE-188 |
owner_facet | DE-188 |
physical | X, 395 S. graph. Darst. |
publishDate | 2013 |
publishDateSearch | 2013 |
publishDateSort | 2013 |
publisher | Springer |
record_format | marc |
series | Fields Institute Communications |
series2 | Fields Institute Communications |
spelling | Asymptotic geometric analysis proceedings of the Fall 2010 Fields Institute Thematic Program Monika Ludwig ... eds. New York, NY [u.a.] Springer 2013 X, 395 S. graph. Darst. txt rdacontent n rdamedia nc rdacarrier Fields Institute Communications 68 Literaturangaben Asymptotic Geometric Analysis is concerned with the geometric and linear properties of finite dimensional objects, normed spaces, and convex bodies, especially with the asymptotics of their various quantitative parameters as the dimension tends to infinity. The deep geometric, probabilistic, and combinatorial methods developed here are used outside the field in many areas of mathematics and mathematical sciences. The Fields Institute Thematic Program in the Fall of 2010 continued an established tradition of previous large-scale programs devoted to the same general research direction. The main directions of the program included:* Asymptotic theory of convexity and normed spaces* Concentration of measure and isoperimetric inequalities, optimal transportation approach* Applications of the concept of concentration* Connections with transformation groups and Ramsey theory* Geometrization of probability* Random matrices* Connection with asymptotic combinatorics and complexity theoryThese directions are represented in this volume and reflect the present state of this important area of research. It will be of benefit to researchers working in a wide range of mathematical sciences-in particular functional analysis, combinatorics, convex geometry, dynamical systems, operator algebras, and computer science Geometrie (DE-588)4020236-7 gnd rswk-swf Asymptotik (DE-588)4126634-1 gnd rswk-swf (DE-588)4143413-4 Aufsatzsammlung gnd-content Geometrie (DE-588)4020236-7 s Asymptotik (DE-588)4126634-1 s DE-604 Ludwig, Monika 1966- Sonstige (DE-588)136244912 oth Fields Institute for Research in Mathematical Sciences Sonstige (DE-588)5098483-4 oth Fields Institute Communications 68 (DE-604)BV035418374 68 DE-601 pdf/application http://www.gbv.de/dms/tib-ub-hannover/745206719.pdf Inhaltsverzeichnis DE-601 pdf/application http://zbmath.org/?q=an:1262.00011 Zentralblatt MATH Inhaltstext |
spellingShingle | Asymptotic geometric analysis proceedings of the Fall 2010 Fields Institute Thematic Program Fields Institute Communications Geometrie (DE-588)4020236-7 gnd Asymptotik (DE-588)4126634-1 gnd |
subject_GND | (DE-588)4020236-7 (DE-588)4126634-1 (DE-588)4143413-4 |
title | Asymptotic geometric analysis proceedings of the Fall 2010 Fields Institute Thematic Program |
title_auth | Asymptotic geometric analysis proceedings of the Fall 2010 Fields Institute Thematic Program |
title_exact_search | Asymptotic geometric analysis proceedings of the Fall 2010 Fields Institute Thematic Program |
title_full | Asymptotic geometric analysis proceedings of the Fall 2010 Fields Institute Thematic Program Monika Ludwig ... eds. |
title_fullStr | Asymptotic geometric analysis proceedings of the Fall 2010 Fields Institute Thematic Program Monika Ludwig ... eds. |
title_full_unstemmed | Asymptotic geometric analysis proceedings of the Fall 2010 Fields Institute Thematic Program Monika Ludwig ... eds. |
title_short | Asymptotic geometric analysis |
title_sort | asymptotic geometric analysis proceedings of the fall 2010 fields institute thematic program |
title_sub | proceedings of the Fall 2010 Fields Institute Thematic Program |
topic | Geometrie (DE-588)4020236-7 gnd Asymptotik (DE-588)4126634-1 gnd |
topic_facet | Geometrie Asymptotik Aufsatzsammlung |
url | http://www.gbv.de/dms/tib-ub-hannover/745206719.pdf http://zbmath.org/?q=an:1262.00011 |
volume_link | (DE-604)BV035418374 |
work_keys_str_mv | AT ludwigmonika asymptoticgeometricanalysisproceedingsofthefall2010fieldsinstitutethematicprogram AT fieldsinstituteforresearchinmathematicalsciences asymptoticgeometricanalysisproceedingsofthefall2010fieldsinstitutethematicprogram |
Es ist kein Print-Exemplar vorhanden.
Beschreibung