Handbook of enumerative combinatorics:
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
Boca Raton
CRC Press
2015
|
Schriftenreihe: | Discrete mathematics and its applications
|
Schlagworte: | |
Online-Zugang: | Inhaltsverzeichnis |
Beschreibung: | Enthält Index und bibliographische Angaben |
Beschreibung: | XXIII, 1061 S. Ill., graph. Darst. |
ISBN: | 9781482220858 |
Internformat
MARC
LEADER | 00000nam a2200000 c 4500 | ||
---|---|---|---|
001 | BV042558548 | ||
003 | DE-604 | ||
005 | 20160304 | ||
007 | t | ||
008 | 150513s2015 xxuad|| |||| 00||| eng d | ||
010 | |a 014041669 | ||
020 | |a 9781482220858 |9 978-1-4822-2085-8 | ||
035 | |a (OCoLC)908617746 | ||
035 | |a (DE-599)BVBBV042558548 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
044 | |a xxu |c US | ||
049 | |a DE-19 |a DE-11 |a DE-20 | ||
050 | 0 | |a QA164 | |
082 | 0 | |a 511/.62 |2 23 | |
084 | |a SK 170 |0 (DE-625)143221: |2 rvk | ||
100 | 1 | |a Bóna, Miklós |e Verfasser |0 (DE-588)1013929861 |4 aut | |
245 | 1 | 0 | |a Handbook of enumerative combinatorics |c ed. by Miklós Bóna |
246 | 1 | 3 | |a Enumerative combinatorics |
264 | 1 | |a Boca Raton |b CRC Press |c 2015 | |
300 | |a XXIII, 1061 S. |b Ill., graph. Darst. | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
490 | 0 | |a Discrete mathematics and its applications | |
500 | |a Enthält Index und bibliographische Angaben | ||
650 | 4 | |a Combinatorial analysis | |
650 | 4 | |a Mathematical analysis | |
650 | 4 | |a Numeration | |
650 | 0 | 7 | |a Diskrete Mathematik |0 (DE-588)4129143-8 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Kombinatorik |0 (DE-588)4031824-2 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Abzählende Kombinatorik |0 (DE-588)4132720-2 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Abzählende Kombinatorik |0 (DE-588)4132720-2 |D s |
689 | 0 | |5 DE-604 | |
689 | 1 | 0 | |a Kombinatorik |0 (DE-588)4031824-2 |D s |
689 | 1 | 1 | |a Diskrete Mathematik |0 (DE-588)4129143-8 |D s |
689 | 1 | |8 1\p |5 DE-604 | |
856 | 4 | 2 | |m SWB Datenaustausch |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=027992287&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
999 | |a oai:aleph.bib-bvb.de:BVB01-027992287 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk |
Datensatz im Suchindex
_version_ | 1804153330897780736 |
---|---|
adam_text | CONTENTS
FOREWORD
XIX
PREFACE
XXI
ACKNOWLEDGMENTS
XXIII
I
METHODS
1
1
ALGEBRAIC
ANDGEOMETRIC
METHODS
INENUMERATIVE
COMBINATORICS
3
FEDERICOARDILA
1.1
INTRODUCTION........
....
;,
.
5
PART
1.
ALGEBRAIC
METHODS
6
1.2
WHATISAGOODANSWER?
.
.........
6
1.3
GENERATINGFUNCTIONS
........
9
1.3.1
THERINGOFFORMALPOWERSERIES.
10
1.3.2
ORDINARYGENERATINGFUNCTIONS.
.
12
1.3.2.1
OPERATIONSON
COMBINATORIALSTRUCTURES
AND
THEIRGENERATINGFUNCTIONS
13
1.3.2.2
EXAMPLES
. ......
...
16
1.3.3
EXPONENTIALGENERATINGFUNCTIONS
....
.........
28
1.3.3.1
OPERATIONSONLABELEDSTRUCTURESANDTHEIREX-
PONENTIALGENERATINGFUNCTIONS
28
1.3.3.2
EXAMPLES...........
30
1.3.4
NICEFAMILIESOFGENERATINGFUNCTIONS
...
36
1.3.4.1
RATIONALGENERATINGFUNCTIONS.
36
1.3.4.2
ALGEBRAICANDD-FINITEGENERATINGFUNCTIONS
38
1.4
LINEARALGEBRAMETHODS
...............
43
1.4.1
DETERMINANTSINCOMBINATORICS
........
43
1.4.1.1
PRELIMINARIES:GRAPHMATRICES..
.
43
1.4.1.2
WALKS:THETRANSFERMATRIXMETHOD
44
1.4.1.3
SPANNINGTREES:THEMATRIX-TREETHEOREM
50
1.4.1.4
EULERIANCYCLES:THEBESTTHEOREM...
53
1.4.1.5
PERFECTMATCHINGS:THEPFAFFIANMETHOD.
56
1.4.1.6
ROUTINGS:THE
LINDSTROM-GESSEL-VIENNOT
LEMMA.
.
..
58
1.4.2
COMPUTINGDETERMINANTS
65
VII
VIII
1.5
POSETS
1.5.1
1.5.2
1.5.3
1.5.4
1.5.5
1.5.6
CONTENTS
1.4.2.1
1.4.2.2
1.4.2.3
1.4.2.4
1.4.2.5
1.4.2.6
ISITKNOWN?
.
ROWAND
COLUMN
OPERATIONS
.
IDENTIFYING
LINEARFACTORS
.
COMPUTING
THEEIGENVALUES
.
LUFACTORIZATIONS
.
.
.
.
.
.
HANKEL
DETERMINANTS
ANDCONTINUED
FRACTIONS
.
65
66
66
67
68
68
71
72
74
77
79
81
81
83
85
86
91
BASICDEFINITIONS
ANDEXAMPLES
.
.
.
.
.
LATTICES
.
ZETAPOLYNOMIALS
ANDORDERPOLYNOMIALS
THEINCLUSION-EXCLUSION
FORMULA
.
.
.
.
MOBIUS
FUNCTIONS
ANDMOBIUS
INVERSION
1.5.5.1
THEMOBIUS
FUNCTION
.
1.5.5.2
MOBIUS
INVERSION
.
1.5.5.3
THEINCIDENCE
ALGEBRA
.
.
.
.
1.5.5.4
COMPUTING
MOBIUS
FUNCTIONS
EULERIAN
POSETS,
FLAGI-VECTORS,
ANDFLAGH-VECTORS
PART2.DISCRETEGEOMETRICMETHODS
93
1.6
POLYTOPES
93
1.6.1
BASICDEFINITIONS
ANDCONSTRUCTIONS
93
1.6.2
EXAMPLES.............
98
1.6.3
COUNTING
FACES
.
.
.
.
.
.
.
.
.
.
.
.
100
1.6.4
COUNTING
LATTICEPOINTS:
EHRHART
THEORY
102
1.7
HYPERPLANE
ARRANGEMENTS
.
.
.
.
.
.
.
.
.
.
108
.
1.7.1
BASICDEFINITIONS
.
.
.
.
.
.
.
.
.
.
.
.
109
1.7.2
THECHARACTERISTIC
POLYNOMIAL
.
.
.
.
.
110
1.7.3
PROPERTIES
OFTHECHARACTERISTIC
POLYNOMIAL
112
1.7.3.1
DELETIONANDCONTRACTION
...
112
1.7.3.2
SIGNALTERNATION
ANDUNIMODALITY
114
1.7.3.3
GRAPHS
ANDPROPER
COLORINGS
..
114
1.7.3.4
FREEARRANGEMENTS
.....
115
1.7.3.5
SUPERSOLVABILITY.......
116
1.7.4
COMPUTING
THECHARACTERISTIC
POLYNOMIAL
117
1.7.5
THECD-INDEX
OFANARRANGEMENT.
.
.
.
.
125
1.8
MATROIDS...............................
126
1.8.1
MAINEXAMPLE:
VECTORCONFIGURATIONS
ANDLINEARMATROIDS
127
1.8.2
BASICDEFINITIONS
.
.
128
1.8.3
EXAMPLES.......
130
1.8.4
BASICCONSTRUCTIONS
..
133
1.8.5
AFEWSTRUCTURAL
RESULTS
134
1.8.6
THETUTTEPOLYNOMIAL
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
138
1.8.6.1
EXPLICIT
DEFINITION
.
.
.
.
.
.
.
.
.
.
.
.
.
138
1.8.6.2
RECURSIVE
DEFINITION
ANDUNIVERSALITY
PROPERTY
138
1.8.6.3
ACTIVITY
INTERPRETATION.
.
..
140
CONTENTS
IX
1.8.7
1.8.6.4
FINITE
FIELDINTERPRETATION
140
TUTTEPOLYNOMIAL
EVALUATIONS
.
141
1.8.7.1
GENERAL
EVALUATIONS
.
.
.
142
1.8.7.2
GRAPHS..........
143
1.8.7.3
HYPERPLANE
ARRANGEMENTS
146
1.8.7.4
ALGEBRAS
FROMARRANGEMENTS
146
1.8.7.5
ERROR-CORRECTING
CODES.
.
.
.
147
1.8.7.6
PROBABILITY
ANDSTATISTICAL
MECHANICS
148
1.8.7.7
OTHER
APPLICATIONS.
.
.
.
.
.
149
COMPUTING
THETUTTEPOLYNOMIAL
.
.
.
.
.
.
.
.
150
GENERALIZATIONS
OFTHETUTTEPOLYNOMIAL
....
153
MATROID
SUBDIVISIONS,
VALUATIONS,
AND
THE
DERKSEN-FINK
1.8.8
1.8.9
1.8.10
INVARIANT
..........................
155
2
ANALYTICMETHODS
173
HELMUT
PRODINGER
2.1
INTRODUCTION.............................
174
2.2
COMBINATORIAL
CONSTRUCTIONS
AND
ASSOCIATED
ORDINARY
GENERATING
FUNCTIONS
175
II
TOPICS
2.3
COMBINATORIAL
CONSTRUCTIONS
ANDASSOCIATED
EXPONENTIAL
GENERATING
FUNCTIONS
.
PARTITIONS
ANDQ-SERIES
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
SOMEAPPLICATIONS
OFTHEADDING
ASLICETECHNIQUE
LAGRANGE
INVERSION
FORMULA
.
.
.
.
.
.
.
.
.
.
.
.
LATTICE
PATHENUMERATION:
THECONTINUED
FRACTION
THEOREM
LATTICE
PATHENUMERATION:
THEKERNEL
METHOD
.
.
.
.
GAMMA
ANDZETAFUNCTION
.
.
.
.
.
.
.
.
.
.
.
.
. .
HARMONIC
NUMBERS
ANDTHEIRGENERATING
FUNCTIONS
.
APPROXIMATION
OFBINOMIAL
COEFFICIENTS
.
MELLIN
TRANSFORM
ANDASYMPTOTICS
OFHARMONIC
SUMS
THEMELLIN-PERRON
FORMULA
.
MELLIN-PERRON
FORMULA:
DIVIDE-AND-CONQUER
RECURSIONS
RICE S
METHOD
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
APPROXIMATE
COUNTING
.
SINGULARITY
ANALYSIS
OFGENERATING
FUNCTIONS
LONGEST
RUNSINWORDS
.
.
.
.
.
.
.
.
.
.
.
.
INVERSIONS
INPERMUTATIONS
ANDPUMPING
MOMENTS
THETREEFUNCTION
.
THESADDLEPOINT
METHOD
.
HWANG S
QUASI-POWER
THEOREM
180
187
191
194
196
201
205
208
209
211
218
222
223
227
231
236
238
241
244
247
2.4
2.5
2.6
2.7
2.8
2.9
2.10
2.11
2.12
2.13
2.14
2.15
2.16
2.17
2.18
2.19
2.20
2.21
2.22
253
3
ASYMPTOTICNORMALITYINENUMERATION
E.RODNEY
CANFIELD
255
X
3.1
INTRODUCTION........
3.2
THENORMAL
DISTRIBUTION
.
.
3.3
METHOD
1:DIRECT
APPROACH
3.4
METHOD
2:NEGATIVE
ROOTS
..
3.5
METHOD
3:MOMENTS
.
3.6
METHOD
4:SINGULARITY
ANALYSIS
3.7
LOCALLIMITTHEOREMS
.....
3.8
MULTIVARIATE
ASYMPTOTIC
NORMALITY
3.9
NORMALITY
INSERVICE
TOAPPROXIMATE
ENUMERATION
4
TREES
MICHAEL
DRMOTA
4.1
INTRODUCTION.....
4.2
BASICNOTIONS
....
4.3
GENERATING
FUNCTIONS
4.3.1
GENERATING
FUNCTIONS
ANDCOMBINATORIAL
CONSTRUCTIONS
4.3.2
THELAGRANGE
INVERSION
FORMULA
4.3.3
THEDISSYMMETRY
THEOREM
.
4.3.4
ASYMPTOTICS
4.4
UNLABELED
TREES
.
4.4.1
BINARY
TREES
.
.
.
.
4.4.2
PLANTED
PLANETREES
.
4.4.3
UNLABELED
PLANETREES
4.4.4
GENERAL
UNLABELED
TREES
4.4.5
SIMPLY
GENERATED
TREESANDGALTON-WATSON
TREES
4.5
LABELED
TREES
.
4.5.1
CAYLEY
TREESANDRELATED
TREES
4.5.2
RECURSIVE
TREES.
.
4.5.3
WELL-LABELED
TREES
4.6
SELECTED
TOPICSONTREES
4.6.1
SPANNING
TREES
4.6.2
K-TREES
...
4.6.3
SEARCH
TREES
.
...
5
PLANAR
MAPS
GILLESSCHAEFFER
5.1
INTRODUCTION
.
5.2
WHAT
ISAMAP?
.
5.2.1
AFEWDEFINITIONS
5.2.2
PLANEMAPS,ROOTED
MAPSANDORIENTATIONS
5.2.3
WHICH
MAPS
SHALLWECOUNT?
.
5.3
COUNTING
TREE-ROOTED
MAPS
.
5.3.1
MULLIN S
DECOMPOSITION
.
5.3.2
SPANNING
TREESANDORIENTATIONS
..5.3.3
VERTEXBLOWING
ANDPOLYHEDRAL
NETS
.
CONTENTS
255
256
258
262
266
270
272
274
276
281
281
283
286
286
292
293
294
295
295
299
304
305
308
310
311
316
318
321
321
324
329
335
336
336
336
339
342
344
344
348
350
7 UNIMODALITY,LOG-CONCAVITY,REAL-ROOTEDNESS ANDBEYOND
PETTERBRANDEN
7.1
INTRODUCTION
.
CONTENTS
6
GRAPHS
XL
5.3.4
ASUMMARYANDSOMEOBSERVATIONS
...
352
5.4
COUNTINGPLANARMAPS
....
.........
..
353
5.4.1
THEEXACTNUMBEROFROOTEDPLANARMAPS
353
5.4.2
UNROOTEDPLANARMAPS
........
..
358
5.4.3
1 VOBIJECTIONSBETWEENMAPSANDTREES
....
..
.
360
5.4.4
SUBSTITUTIONRELATIONS
364
5.4.5
ASYMPTOTIC
ENUMERATION
AND
UNIFORM
RANDOM
PLANAR
MAPS.
.................
367
5.4.6
DISTANCESINPLANARMAPS
370
5.4.7
LOCALLIMIT,CONTINUUMLIMIT.
...
.
373
5.5
BEYONDPLANARMAPS,ANEVENSHORTERACCOUNT
374
5.5.1
PATTERNSANDUNIVERSALITY.
...
...
.....
375
5.5.2
THEBIJECTIVECANVASANDMASTERBIJECTIONS
.....
376
5.5.3
MAPSONSURFACES
380
5.5.4
DECORATEDMAPS
..........
.........
382
MARCNOY
6.1
INTRODUCTION
6.2
397
...............
398
400
401
404
405
406
409
409
411
412
412
414
417
420
420
422
423
426
426
428
428
429
430
6.3
6.4
GRAPHDECOMPOSITIONS
.
6.2.1
GRAPHSWITHGIVENCONNECTIVITY
6.2.2
GRAPHSWITHGIVENMINIMUMDEGREE.
6.2.3
BIPARTITEGRAPHS
....
.......
CONNECTEDGRAPHSWITHGIVENEXCESS
.
REGULARGRAPHS
.
6.4.1
THEPAIRINGMODEL...
6.4.2
DIFFERENTIALEQUATIONS
.....
MONOTONEANDHEREDITARYCLASSES
....
6.5.1
MONOTONECLASSES
.
6.5.2
HEREDITARYCLASSES
:....
PLANARGRAPHS
.
GRAPHSONSURFACESANDGRAPHMINORS
6.7.1
GRAPHSONSURFACES
.
6.7.2
GRAPHMINORS
..
.
.
6.7.3
PARTICULARCLASSES
.
DIGRAPHS
.
6.8.1
ACYCLICDIGRAPHS.
6.8.2
STRONGLYCONNECTEDDIGRAPHS
UNLABELEDGRAPHS
.
6.9.1
COUNTINGGRAPHSUNDERSYMMETRIES
6.9.2
ASYMPTOTICS
.
.,.
6.5
6.6
6.7
6.8
6.9
437
438
XLL
CONTENTS
7.2
7.3
PROBABILISTIC
CONSEQUENCES
OFREAL-ROOTEDNESS
UNIMODALITY
ANDY-NONNEGATIVITY
.
.
.
.
.
7.3.1
ANACTIONONPERMUTATIONS
....
7.3.2
Y-NONNEGATIVITY
OFH-POLYNOMIALS
7.3.3
BARYCENTRIC
SUBDIVISIONS
....
7.3.4
UNIMODALITY
OFH*-POLYNOMIALS
LOG-CONCAVITY
ANDMATROIDS
INFINITELOG-CONCAVITY
.
.
.
.
.
.
THENEGGERS-STANLEY
CONJECTURE
PRESERVING
REAL-ROOTEDNESS
...
7.7.1
THESUBDIVISION
OPERATOR
COMMON
INTERLEAVERS
.
7.8.1
S-EULERIAN
POLYNOMIALS
.
7.8.2
EULERIAN
POLYNOMIALS
FORFINITECOXETER
GROUPS
MULTIVARIATE
TECHNIQUES
.
.
.
.
.
.
.
.
.
.
7.9.1
STABLEPOLYNOMIALS
ANDMATROIDS
7.9.2
STRONG
RAYLEIGH
MEASURES
....
7.9.3
THESYMMETRIC
EXCLUSION
PROCESS
7.9.4
THE
GRACE-WALSH-SZEGF
THEOREM,
ANDTHEPROOF
OFTHE-
OREM7.5.1
441
442
443
446
447
449
450
452
453
456
459
460
464
465
468
469
470
472
7.4
7.5
7.6
7.7
7.8
7.9
474
476
7.10
HISTORICAL
NOTES
I
I
*****
,
I
IT
**
I
I
I
I
**
,
,
***
I
**
8
WORDS
DOMINIQUE
PERRINANDANTONIORESTIVO
8.1
INTRODUCTION........
8.2
PRELIMINARIES
.
8.2.1
GENERATING
SERIES
8.2.2
AUTOMATA
8.3
CONJUGACY.....
8.3.1
PERIODS
.
.
8.3.2
NECKLACES
8.3.3
CIRCULAR
CODES
8.4
LYNDON
WORDS
.....
8.4.1
THEFACTORIZATION
THEOREM
.
8.4.2
GENERATING
LYNDON
WORDS
.
8.5
EULERIAN
GRAPHS
ANDDEBRUIJN
CYCLES
8.5.1
THEBEST
THEOREM
.
8.5.2
THEMATRIX-TREE
THEOREM
.
8.5.3
LYNDON
WORDS
ANDDEBRUIJN
CYCLES
8.6
UNAVOIDABLE
SETS
.
8.6.1
ALGORITHMS
.
.
.
.
.
.
.
.
.
.
.
.
.
.
8.6.2
UNAVOIDABLE
SETSOFCONSTANT
LENGTH
.
8.6.3
CONCLUSION.......
8.7
..
THEBURROWS-WHEELER
TRANSFORM
8.7.1
THEINVERSETRANSFORM
.
485
486
487
488
491
492
492
493
497
500
501
503
504
507
508
510
512
513
516
519
521
522
CONTENTS
XIII
8.7.2 DESCENTS
OFAPERMUTATION.
.
.
.
.
.
.
.
.
.
.
.
.
524
8.8
THEGESSEL-REUTENAUER
BIJECTION
.....
.
.
.
.
.
.
.
.
.
525
8.8.1
GESSEL-REUTENAUER
BIJECTION
ANDDEBRUIJN
CYCLES
527
8.9
SUFFIXARRAYS
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
..
530
8.9.1
SUFFIXARRAYS
ANDBURROWS-WHEELER
TRANSFORM
530
8.9.2
COUNTING
SUFFIXARRAYS
.
...
.
.
.
.
.
.
.
.
.
.
.
..
532
10
LATTICE
PATHENUMERATION
CHRISTIAN
KRATTENTHALER
10.1
INTRODUCTION
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
10.2
LATTICE
PATHSWITHOUT
RESTRICTIONS
.
10.3
LINEAR
BOUNDARIES
OFSLOPE
1
.
10.4
SIMPLEPATHS
WITHLINEARBOUNDARIES
OFRATIONAL
SLOPE,I
.
10.5
SIMPLEPATHS
WITHLINEARBOUNDARIES
WITHRATIONAL
SLOPE,II
10.6
SIMPLEPATHS
WITHAPIECEWISE
LINEARBOUNDARY
.
10.7
SIMPLEPATHS
WITHGENERAL
BOUNDARIES
.
10.8
ELEMENTARY
RESULTS
ONMOTZKIN
ANDSCHRODER
PATHS
.
10.9
ACONTINUED
FRACTION
FORTHEWEIGHTED
COUNTING
OFMOTZKIN
PATHS
10.10
LATTICE
PATHS
ANDORTHOGONAL
POLYNOMIALS
10.11
MOTZKIN
PATHS
INASTRIP
.
10.12
FURTHER
RESULTS
FORLATTICEPATHS
INTHEPLANE
.
10.13
NON-INTERSECTING
LATTICEPATHS
.
10.14
LATTICE
PATHS
ANDTHEIRTURNS
.
.
.
.
.
.
.
.
.
.
.
.
10.15
MULTIDIMENSIONAL
LATTICEPATHS
.
10.16
MULTIDIMENSIONAL
LATTICE
PATHSBOUNDED
BYAHYPERPLANE
9
THINGS
JAMESPROPP
9.1
INTRODUCTION..........................
9.2
THETRANSFER
MATRIX
METHOD
.
.
.
.
.
.
.
..
.
9.3
OTHERDETERMINANT
METHODS
.
9.3.1
THEPATHMETHOD
.
9.3.2
THEPERMANENT-DETERMINANT
ANDHAFNIAN-PFAFFIAN
METHOD
9.3.3
THESPANNING
TREEMETHOD
.
.
.
.
REPRESENTATION-THEORETIC
METHODS
.
.
.
.
.
.
OTHERCOMBINATORIAL
METHODS
.
.
.
.
.
.
.
.
.
.
.
.
.
9.4
9.5
9.6
9.7
RELATED
TOPICS,
ANDANATTEMPT
ATHISTORY
SOMEEMERGENT
THEMES
....
9.7.1
RECURRENCE
RELATIONS.
9.7.2
SMOOTHNESS
.....
9.7.3
NON-PERIODIC
WEIGHTS
9.7.4
OTHER
NUMERICAL
PATTERNS
9.7.5
SYMMETRY
.
SOFTWARE
9.8
9.9
FRONTIERS
.
541
541
548
551
551
553
555
556
559
562
565
565
566
568
569
570
571
573
589
589
592
594
598
606
611
612
615
618
622
629
633
638
651
657
658
10.17
MULTIDIMENSIONAL PATHSWITHAGENERAL BOUNDARY.
.
.
.
.
.
.
658
10.18
THEREFLECTION
PRINCIPLE
INFULLGENERALITY
.
.
.
.
.
.
.
.
.
.
.
659
10.19
Q-COUNTING
OFLATTICEPATHS
ANDROGERS-RAMANUJAN
IDENTITIES
667
10.20
SELF-AVOIDING
WALKS
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
670
XIV
CONTENTS
11CATALANPATHSANDQ,T-ENUMERATION
679
JAMESHAGLUND
11.1
INTRODUCTION
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
680
11.2
INTRODUCTION
TOQ-ANALOGUES
ANDCATALAN
NUMBERS
....
680
11.2.1
PERMUTATION
STATISTICS
ANDGAUSSIAN
POLYNOMIALS
680
11.2.2
THECATALAN
NUMBERS
ANDDYCKPATHS
.
686
11.2.3
THE
Q-
VANDERMONDE
CONVOLUTION
689
11.2.4
SYMMETRIC
FUNCTIONS.
.
.
.
.
.
.
.
.
.
691
11.2.4.1
THEBASICS
.
.
.
.
.
.
.
.
.
691
11.2.4.2
TABLEAUX
ANDSCHURFUNCTIONS
.
694
11.2.4.3
STATISTICS
ONTABLEAUX
.
.
.
.
.
697
11.2.5
REPRESENTATION
THEORY
.
.
.
.
.
.
.
.
.
.
.
698
11.2.5.1
THERINGOFCOINVARIANTS
ANDTHESPACEOFDIAG-
ONALHARMONICS
701
11.3
THEQ,T-CATALAN
NUMBERS
702
11.3.1
THEBOUNCE
STATISTIC
.
.
.
.
.
.
.
.
.
704
11.3.2
THESPECIAL
VALUEST
=
1ANDT
=
1/Q
707
11.3.3
THESYMMETRY
PROBLEM
ANDTHEDINVSTATISTIC
709
11.3.4
Q-LAGRANGE
INVERSION
.
.
.
.
.
712
11.4
PARKING
FUNCTIONS
ANDTHEHILBERT
SERIES
716
11.4.1
EXTENSION
OFTHEDINVSTATISTIC
.
716
11.4.2
ANEXPLICIT
FORMULA
718
11.4.3
THESTATISTIC
AREA
....
721
11.4.4
THEPMAJ
STATISTIC
.
.
.
.
722
11.4.5
THECYCLIC-SHIFT
OPERATION
725
11.4.6
TESLERMATRICES.
.
.
.
.
.
729
11.5
THEQ,R-SCHRODER
POLYNOMIAL
.
.
.
731
11.5.1
THESCHRODER
BOUNCE
ANDAREASTATISTICS.
731
11.5.2
RECURRENCES
ANDEXPLICIT
FORMULAE
734
11.5.3
THESPECIAL
VALUET
=
1/Q
738
11.5.4
ASCHRODER
DINV-STATISTIC
...
739
11.5.5
THESHUFFLECONJECTURE
.
.
.
.
.
740
11.6
RATIONAL
CATALAN
COMBINATORICS
.
.
.
.
.
742
11.6.1
THESUPERPOLYNOMIAL
INVARIANT
OFATORUSKNOT
742
11.6.2
TESLERMATRICES
ANDTHESUPERPOLYNOMIAL
745
12PERMUTATIONCLASSES
753
VINCENTVATTER
12.R
INTRODUCTION
.
754
12.1.1
BASICS
755
CONTENTS
XV
12.1.2 AVOIDINGAPERMUTATIONOFLENGTHTHREE
12.1.3
WILT-EQUIVALENCE
.
12.1.4
AVOIDINGALONGERPERMUTATION
.
12.2
GROWTHRATESOFPRINCIPALCLASSES
.
12.2.1
MATRICESANDTHEINTERVALMINORORDER.
12.2.2
THENUMBEROFLIGHTMATRICES
.
12.2.3
MATRICESAVOIDING
H
ARELIGHT
.
12.2.4
DENSEMATRICESCONTAINMANYPERMUTATIONS..
12.2.5
DENSEMATRICESAVOIDING
H
12.3
NOTIONSOFSTRUCTURE
.
12.3.1
MERGINGANDSPLITTING
.
12.3.2
THESUBSTITUTIONDECOMPOSITION
12.3.3
ATOMICITY
.
12.4
THESETOFALLGROWTHRATES
.
12.4.1
MONOTONEGRIDCLASSES.
12.4.2
GEOMETRICGRIDCLASSES.
12.4.3
GENERALIZEDGRIDCLASSES..
12.4.4
SMALLPERMUTATIONCLASSES
.
759
761
766
771
773
777
778
780
782
786
788
792
797
800
803
808
815
818
13
PARKING
FUNCTIONS
835
CATHERINE
H.YAN
13.1
INTRODUCTION
.........
......
836
13.2
PARKINGFUNCTIONSANDLABELEDTREES
...
837
13.2.1
LABELEDTREESWITHPRUFERCODE
837
13.2.2
INVERSIONSOFLABELEDTREES.
..
839
13.2.3
GRAPHSEARCHINGALGORITHMS
..
843
13.2.4
EXTERNALACTIVITYOFLABELEDTREES
847
13.2.5
SPARSECONNECTEDGRAPHS.
.
848
13.3
MANYFACESOFPARKINGFUNCTIONS
.....
850
13.3.1
HASHINGANDLINEARPROBING
...
850
13.3.2
LATTICEOFNONCROSSINGPARTITIONS
852
13.3.3
HYPERPLANEARRANGEMENTS
..
855
13.3.4
ALLOWABLEINPUT-OUTPUTPAIRSINAPRIORITYQUEUE
857
13.3.5
TWOVARIATIONSOFPARKINGFUNCTIONS
858
13.4
GENERALIZEDPARKINGFUNCTIONS
859
13.4.1
U-PARKINGFUNCTIONS
..
..
...
859
13.4.2
APARKINGPOLYTOPE
.,.....
861
13.4.3
THEORYOFGONCAROVPOLYNOMIALS
864
13.4.4
CLASSICALPARKINGFUNCTIONS
........
........
870
13.5
PARKINGFUNCTIONSASSOCIATEDWITHGRAPHS
874
13.5.1
G-PARKINGFUNCTIONS.
...................
874
13.5.2
ABELIANSANDPILEMODEL
..................
875
13.5.3
MULTIPARKINGFUNCTIONS,GRAPHSEARCHING,ANDTHETUTTE
POLYNOMIAL.
.....................
.
878
13.6
FINALREMARKS
:.
884
XVI
14
STANDARD YOUNGTABLEAUX
RONADIN
ANDYUVALROICHMAN
14.1
INTRODUCTION
....
14.1.1
APPETIZER
14.1.2
GENERAL
.
14.2
PRELIMINARIES
14.2.1
DIAGRAMSANDTABLEAUX
14.2.2
CONNECTEDNESSANDCONVEXITY
14.2.3
INVARIANCEUNDERSYMMETRY
.
14.2.4
ORDINARY,SKEWANDSHIFTEDSHAPES.
14.2.5
INTERPRETATIONS
.
14.2.5.1
THEYOUNGLATTICE
.
14.2.5.2
BALLOTSEQUENCESANDLATTICEPATHS.
14.2.5.3
THEORDERPOLYTOPE
.
14.2.5.4
OTHERINTERPRETATIONS
14.2.6
MISCELLANEA
..
14.3
FORMULASFORTHINSHAPES
..
14.3.1
HOOKSHAPES
....
14.3.2
TWO-ROWEDSHAPES.
14.3.3
ZIGZAGSHAPES
...
14.4
JEUDETAQUINANDTHERSCORRESPONDENCE.
14.4.1
JEUDETAQUIN
.
14.4.2
THEROBINSON-SCHENSTEDCORRESPONDENCE.
14.4.3
ENUMERATIVEAPPLICATIONS
14.5
FORMULASFORCLASSICALSHAPES
14.5.1
ORDINARYSHAPES
14.5.2
SKEWSHAPES
.
14.5.3
SHIFTEDSHAPES
.
14.6
MOREPROOFSOFTHEHOOKLENGTHFORMULA
14.6.1
APROBABILISTICPROOF
.
14.6.2
BIJECTIVEPROOFS
.
14.6.3
PARTIALDIFFERENCEOPERATORS
14.7
FORMULASFORSKEWSTRIPS
.
14.7.1
ZIGZAGSHAPES
.
14.7.2
SKEWSTRIPSOFCONSTANTWIDTH
14.8
TRUNCATEDANDOTHERNON-CLASSICALSHAPES
14.8.1
TRUNCATEDSHIFTEDSTAIRCASESHAPE
14.8.2
TRUNCATEDRECTANGULARSHAPES
..
14.8.3
OTHERTRUNCATEDSHAPES
.....
14.8.4
PROOFAPPROACHESFORTRUNCATEDSHAPES
14.9
RIMHOOKANDDOMINOTABLEAUX
..
14.9.1
DEFINITIONS
.
*
14.9.2
THER-QUOTIENTANDR-CORE
14.10Q-ENUMERATION
.
14.10.1
PERMUTATIONSTATISTICS
..
CONTENTS
895
896
896
898
898
898
899
900
901
903
903
903
904
905
905
905
905
906
907
908
908
910
911
913
913
916
918
919
919
921
926
930
930
933
938
938
939
941
942
944
944
945
949
949
14.10.2 STATISTICSONTABLEAUX
950
14.10.3
THINSHAPES
952
14.10.3.1
HOOKSHAPES.
.
..
952
14.10.3.2
ZIGZAGSHAPES
...
952
14.10.3.3
TWO-ROWEDSHAPES.
953
14.10.4
THEGENERALCASE.
.
......
955
14.10.4.1
COUNTINGBYDESCENTS
955
14.10.4.2
COUNTINGBYMAJORINDEX
956
14.10.4.3
COUNTINGBYINVERSIONS.
957
14.11COUNTINGREDUCEDWORDS
957
14.11.1
COXETERGENERATORSANDREDUCEDWORDS
957
14.11.2
ORDINARYANDSKEWSHAPES.
..
...
958
14.11.3
SHIFTEDSHAPES
............
960
14.12APPENDIX1:REPRESENTATIONTHEORETICASPECTS
961
14.12.1
DEGREESANDENUMERATION
....
..
961
14.12.2
CHARACTERSANDQ-ENUMERATION.
...
963
14.13APPENDIX2:ASYMPTOTICSANDPROBABILISTICASPECTS
964
CONTENTS
15
COMPUTER
ALGEBRA
MANUEL
KAUERS
15.1
INTRODUCTION
.
15.2
COMPUTERALGEBRAESSENTIALS
.
15.2.1
NUMBERS
.
15.2.1.1
INTEGERSANDRATIONALNUMBERS.
15.2.1.2
ALGEBRAICNUMBERS
.....
,.
15.2.1.3
REALANDCOMPLEXNUMBERS
..
15.2.1.4
FINITEFIELDSANDMODULARARITHMETIC
15.2.1.5
LATTICEREDUCTION
.
15.2.2
POLYNOMIALS
.
15.2.2.1
ARITHMETICANDFACTORIZATION
15.2.2.2
EVALUATIONANDINTERPOLATION
15.2.2.3
GROBNERBASES
.
15.2.2.4
CYLINDRICALALGEBRAICDECOMPOSITION
15.2.3
FORMALPOWERSERIES
........
15.2.3.1
TRUNCATEDPOWERSERIES
15.2.3.2
LAZYPOWERSERIES
..
15.2.3.3
GENERALIZEDSERIES...
15.2.3.4
THEMULTIVARIATECASE
.
15.2.4
OPERATORS
.
15.2.4.1
OREALGEBRAS
.
15.2.4.2
ACTIONSANDSOLUTIONS
..
COUNTINGALGORITHMS
.
15.3.1
SPECIALPURPOSEALGORITHMS
.
1532
C
BI
.1
.
..
OMMATONA
SPECIES..........
.....
15.3.2.1
FORMALDEFINITIONANDASSOCIATEDSERIES
15.3
XVII
975
976
977
978
978
978
979
980
981
983
984
985
985
987
988
988
989
990
990
991
992
993
996
996
999
1000
XVLLL
INDEX
15.3.2.2
STANDARDCONSTRUCTIONS
15.3.2.3
RECURSIVESPECIFICATIONS.
15.3.3
PARTITIONANALYSIS
.
15.3.3.1
Q-CA1CULUS
.
15.3.3.2
EHRHARTTHEORY
..
15.3.4
COMPUTATIONALGROUPTHEORY.
15.3.4.1
PERMUTATIONGROUPS
15.3.4.2
FINITELYPRESENTEDGROUPS
15.3.5
SOFTWARE
15.4
SYMBOLICSUMMATION
.
15.4.1
CLASSICALALGORITHMS
.
15.4.1.1
HYPERGEOMETRICTERMS.
15.4.1.2
GOSPER SALGORITHM
..
15.4.1.3
ZEILBERGER SALGORITHM.
15.4.1.4
PETKOVSEK SALGORITHM.
15.4.2
ILL-THEORY
.
15.4.2.1
ILL-EXPRESSIONSANDDIFFERENCEFIELDS.
15.4.2.2
INDEFINITESUMMATION
..
15.4.2.3
CREATIVETELESCOPING...
15.4.2.4
D ALEMBERTIANSOLUTIONS
15.4.2.5
NESTEDDEFINITESUMS
..
15.4.3
THEHOLONOMICSYSTEMSAPPROACH..
15.4.3.1
D-FINITEANDHOLONOMICFUNCTIONS
15.4.3.2
CLOSUREPROPERTIES.....
15.4.3.3
SUMMATIONANDINTEGRATION
.
15.4.3.4
NESTEDSUMSANDINTEGRALS
.
15.4.4
IMPLEMENTATIONSANDCURRENTRESEARCHTOPICS
THEGUESS-AND-PROVEPARADIGM
......
......
15.5
CONTENTS
1000
1002
1003
1003
1005
1007
1007
1008
1010
1011
1011
1011
1012
1013
1014
1015
1015
1017
1019
1020
1021
1021
1022
1023
1025
1026
1027
1028
1047
|
any_adam_object | 1 |
author | Bóna, Miklós |
author_GND | (DE-588)1013929861 |
author_facet | Bóna, Miklós |
author_role | aut |
author_sort | Bóna, Miklós |
author_variant | m b mb |
building | Verbundindex |
bvnumber | BV042558548 |
callnumber-first | Q - Science |
callnumber-label | QA164 |
callnumber-raw | QA164 |
callnumber-search | QA164 |
callnumber-sort | QA 3164 |
callnumber-subject | QA - Mathematics |
classification_rvk | SK 170 |
ctrlnum | (OCoLC)908617746 (DE-599)BVBBV042558548 |
dewey-full | 511/.62 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 511 - General principles of mathematics |
dewey-raw | 511/.62 |
dewey-search | 511/.62 |
dewey-sort | 3511 262 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01930nam a2200505 c 4500</leader><controlfield tag="001">BV042558548</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20160304 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">150513s2015 xxuad|| |||| 00||| eng d</controlfield><datafield tag="010" ind1=" " ind2=" "><subfield code="a">014041669</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781482220858</subfield><subfield code="9">978-1-4822-2085-8</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)908617746</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV042558548</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="044" ind1=" " ind2=" "><subfield code="a">xxu</subfield><subfield code="c">US</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-19</subfield><subfield code="a">DE-11</subfield><subfield code="a">DE-20</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QA164</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">511/.62</subfield><subfield code="2">23</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 170</subfield><subfield code="0">(DE-625)143221:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Bóna, Miklós</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)1013929861</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Handbook of enumerative combinatorics</subfield><subfield code="c">ed. by Miklós Bóna</subfield></datafield><datafield tag="246" ind1="1" ind2="3"><subfield code="a">Enumerative combinatorics</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Boca Raton</subfield><subfield code="b">CRC Press</subfield><subfield code="c">2015</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">XXIII, 1061 S.</subfield><subfield code="b">Ill., graph. Darst.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Discrete mathematics and its applications</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Enthält Index und bibliographische Angaben</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Combinatorial analysis</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematical analysis</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Numeration</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Diskrete Mathematik</subfield><subfield code="0">(DE-588)4129143-8</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Kombinatorik</subfield><subfield code="0">(DE-588)4031824-2</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Abzählende Kombinatorik</subfield><subfield code="0">(DE-588)4132720-2</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Abzählende Kombinatorik</subfield><subfield code="0">(DE-588)4132720-2</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Kombinatorik</subfield><subfield code="0">(DE-588)4031824-2</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2="1"><subfield code="a">Diskrete Mathematik</subfield><subfield code="0">(DE-588)4129143-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">SWB Datenaustausch</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=027992287&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-027992287</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield></record></collection> |
id | DE-604.BV042558548 |
illustrated | Illustrated |
indexdate | 2024-07-10T01:24:54Z |
institution | BVB |
isbn | 9781482220858 |
language | English |
lccn | 014041669 |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-027992287 |
oclc_num | 908617746 |
open_access_boolean | |
owner | DE-19 DE-BY-UBM DE-11 DE-20 |
owner_facet | DE-19 DE-BY-UBM DE-11 DE-20 |
physical | XXIII, 1061 S. Ill., graph. Darst. |
publishDate | 2015 |
publishDateSearch | 2015 |
publishDateSort | 2015 |
publisher | CRC Press |
record_format | marc |
series2 | Discrete mathematics and its applications |
spelling | Bóna, Miklós Verfasser (DE-588)1013929861 aut Handbook of enumerative combinatorics ed. by Miklós Bóna Enumerative combinatorics Boca Raton CRC Press 2015 XXIII, 1061 S. Ill., graph. Darst. txt rdacontent n rdamedia nc rdacarrier Discrete mathematics and its applications Enthält Index und bibliographische Angaben Combinatorial analysis Mathematical analysis Numeration Diskrete Mathematik (DE-588)4129143-8 gnd rswk-swf Kombinatorik (DE-588)4031824-2 gnd rswk-swf Abzählende Kombinatorik (DE-588)4132720-2 gnd rswk-swf Abzählende Kombinatorik (DE-588)4132720-2 s DE-604 Kombinatorik (DE-588)4031824-2 s Diskrete Mathematik (DE-588)4129143-8 s 1\p DE-604 SWB Datenaustausch application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=027992287&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Bóna, Miklós Handbook of enumerative combinatorics Combinatorial analysis Mathematical analysis Numeration Diskrete Mathematik (DE-588)4129143-8 gnd Kombinatorik (DE-588)4031824-2 gnd Abzählende Kombinatorik (DE-588)4132720-2 gnd |
subject_GND | (DE-588)4129143-8 (DE-588)4031824-2 (DE-588)4132720-2 |
title | Handbook of enumerative combinatorics |
title_alt | Enumerative combinatorics |
title_auth | Handbook of enumerative combinatorics |
title_exact_search | Handbook of enumerative combinatorics |
title_full | Handbook of enumerative combinatorics ed. by Miklós Bóna |
title_fullStr | Handbook of enumerative combinatorics ed. by Miklós Bóna |
title_full_unstemmed | Handbook of enumerative combinatorics ed. by Miklós Bóna |
title_short | Handbook of enumerative combinatorics |
title_sort | handbook of enumerative combinatorics |
topic | Combinatorial analysis Mathematical analysis Numeration Diskrete Mathematik (DE-588)4129143-8 gnd Kombinatorik (DE-588)4031824-2 gnd Abzählende Kombinatorik (DE-588)4132720-2 gnd |
topic_facet | Combinatorial analysis Mathematical analysis Numeration Diskrete Mathematik Kombinatorik Abzählende Kombinatorik |
url | http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=027992287&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
work_keys_str_mv | AT bonamiklos handbookofenumerativecombinatorics AT bonamiklos enumerativecombinatorics |