Ideals, varieties, and algorithms: an introduction to computational algebraic geometry and commutative algebra
Gespeichert in:
Hauptverfasser: | , , |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Cham [u.a.]
Springer
2015
|
Ausgabe: | 4. ed. |
Schriftenreihe: | Undergraduate texts in mathematics
|
Schlagworte: | |
Online-Zugang: | BTU01 FRO01 TUM01 UBM01 UBT01 UBW01 UPA01 Volltext Inhaltsverzeichnis Abstract |
Beschreibung: | 1 Online-Ressource (XVI, 646 S.) 95 illus., 10 illus. in color |
ISBN: | 9783319167213 |
DOI: | 10.1007/978-3-319-16721-3 |
Internformat
MARC
LEADER | 00000nmm a2200000zc 4500 | ||
---|---|---|---|
001 | BV042544502 | ||
003 | DE-604 | ||
005 | 20210913 | ||
007 | cr|uuu---uuuuu | ||
008 | 150506s2015 |||| o||u| ||||||eng d | ||
020 | |a 9783319167213 |c Online |9 978-3-319-16721-3 | ||
024 | 7 | |a 10.1007/978-3-319-16721-3 |2 doi | |
035 | |a (OCoLC)910404318 | ||
035 | |a (DE-599)BVBBV042544502 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-91 |a DE-19 |a DE-703 |a DE-20 |a DE-739 |a DE-634 |a DE-861 |a DE-83 | ||
082 | 0 | |a 516.35 |2 22 | |
082 | 0 | |a 516.35 |2 23 | |
084 | |a SK 240 |0 (DE-625)143226: |2 rvk | ||
084 | |a MAT 535f |2 stub | ||
084 | |a MAT 000 |2 stub | ||
084 | |a MAT 130f |2 stub | ||
084 | |a MAT 140f |2 stub | ||
100 | 1 | |a Cox, David A. |d 1948- |e Verfasser |0 (DE-588)137410832 |4 aut | |
245 | 1 | 0 | |a Ideals, varieties, and algorithms |b an introduction to computational algebraic geometry and commutative algebra |c David A. Cox ; John Little ; Donal O'Shea |
250 | |a 4. ed. | ||
264 | 1 | |a Cham [u.a.] |b Springer |c 2015 | |
300 | |a 1 Online-Ressource (XVI, 646 S.) |b 95 illus., 10 illus. in color | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a Undergraduate texts in mathematics | |
650 | 4 | |a Mathematics | |
650 | 4 | |a Geometry, algebraic | |
650 | 4 | |a Algebra | |
650 | 4 | |a Computer software | |
650 | 4 | |a Logic, Symbolic and mathematical | |
650 | 4 | |a Algebraic Geometry | |
650 | 4 | |a Commutative Rings and Algebras | |
650 | 4 | |a Mathematical Logic and Foundations | |
650 | 4 | |a Mathematical Software | |
650 | 4 | |a Mathematik | |
650 | 0 | 7 | |a Datenverarbeitung |0 (DE-588)4011152-0 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Algebraische Geometrie |0 (DE-588)4001161-6 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Algorithmische Geometrie |0 (DE-588)4130267-9 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Kommutative Algebra |0 (DE-588)4164821-3 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Computeralgebra |0 (DE-588)4010449-7 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Algebraische Geometrie |0 (DE-588)4001161-6 |D s |
689 | 0 | 1 | |a Computeralgebra |0 (DE-588)4010449-7 |D s |
689 | 0 | |5 DE-604 | |
689 | 1 | 0 | |a Kommutative Algebra |0 (DE-588)4164821-3 |D s |
689 | 1 | 1 | |a Computeralgebra |0 (DE-588)4010449-7 |D s |
689 | 1 | |5 DE-604 | |
689 | 2 | 0 | |a Kommutative Algebra |0 (DE-588)4164821-3 |D s |
689 | 2 | 1 | |a Datenverarbeitung |0 (DE-588)4011152-0 |D s |
689 | 2 | |8 1\p |5 DE-604 | |
689 | 3 | 0 | |a Algebraische Geometrie |0 (DE-588)4001161-6 |D s |
689 | 3 | 1 | |a Algorithmische Geometrie |0 (DE-588)4130267-9 |D s |
689 | 3 | |8 2\p |5 DE-604 | |
700 | 1 | |a Little, John |e Verfasser |4 aut | |
700 | 1 | |a O'Shea, Donal |d 1952- |e Verfasser |0 (DE-588)113289731 |4 aut | |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |z 978-3-319-16720-6 |
856 | 4 | 0 | |u https://doi.org/10.1007/978-3-319-16721-3 |x Verlag |z URL des Erstveröffentlichers |3 Volltext |
856 | 4 | 2 | |m Springer Fremddatenuebernahme |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=027978508&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
856 | 4 | 2 | |m Springer Fremddatenuebernahme |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=027978508&sequence=000003&line_number=0002&func_code=DB_RECORDS&service_type=MEDIA |3 Abstract |
912 | |a ZDB-2-SMA | ||
940 | 1 | |q UBY_PDA_SMA | |
940 | 1 | |q ZDB-2-SMA_2015 | |
999 | |a oai:aleph.bib-bvb.de:BVB01-027978508 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 2\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
966 | e | |u https://doi.org/10.1007/978-3-319-16721-3 |l BTU01 |p ZDB-2-SMA |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1007/978-3-319-16721-3 |l FRO01 |p ZDB-2-SMA |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1007/978-3-319-16721-3 |l TUM01 |p ZDB-2-SMA |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1007/978-3-319-16721-3 |l UBM01 |p ZDB-2-SMA |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1007/978-3-319-16721-3 |l UBT01 |p ZDB-2-SMA |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1007/978-3-319-16721-3 |l UBW01 |p ZDB-2-SMA |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1007/978-3-319-16721-3 |l UPA01 |p ZDB-2-SMA |x Verlag |3 Volltext |
Datensatz im Suchindex
_version_ | 1804153310120247296 |
---|---|
adam_text | IDEALS, VARIETIES, AND ALGORITHMS
/ COX, DAVID A.
: 2015
TABLE OF CONTENTS / INHALTSVERZEICHNIS
PREFACE
NOTATION FOR SETSAND FUNCTIONS
1. GEOMETRY, ALGEBRA, AND ALGORITHMS
2. GROEBNER BASES
3. ELIMINATION THEORY
4.THE ALGEBRA-GEOMETRY DICTIONARY
5. POLYNOMIAL AND RATIONAL FUNCTIONS ON A VARIETY
6. ROBOTICS AND AUTOMATIC GEOMETRIC THEOREM PROVING
7. INVARIANT THEORY OF FINITE GROUPS
8. PROJECTIVE ALGEBRAIC GEOMETRY
9. THE DIMENSION OF A VARIETY
10.ADDITIONAL GROEBNER BASIS ALGORITHMS
APPENDIX A. SOME CONCEPTS FROM ALGEBRA
APPENDIX B. PSEUDOCODE
APPENDIX C. COMPUTER ALGEBRA SYSTEMS
APPENDIX D. INDEPENDENT PROJECTS
REFERENCES
INDEX
DIESES SCHRIFTSTUECK WURDE MASCHINELL ERZEUGT.
IDEALS, VARIETIES, AND ALGORITHMS
/ COX, DAVID A.
: 2015
ABSTRACT / INHALTSTEXT
THIS TEXT COVERS TOPICS IN ALGEBRAIC GEOMETRY AND COMMUTATIVE ALGEBRA
WITH A STRONG PERSPECTIVE TOWARD PRACTICAL AND COMPUTATIONAL ASPECTS.
THE FIRST FOUR CHAPTERS FORM THE CORE OF THE BOOK. A COMPREHENSIVE CHART
IN THE PREFACE ILLUSTRATES A VARIETY OF WAYS TO PROCEED WITH THE
MATERIAL ONCE THESE CHAPTERS ARE COVERED. IN ADDITION TO THE
FUNDAMENTALS OF ALGEBRAIC GEOMETRY—THE ELIMINATION THEOREM, THE
EXTENSION THEOREM, THE CLOSURE THEOREM, AND THE NULLSTELLENSATZ—THIS
NEW EDITION INCORPORATES SEVERAL SUBSTANTIAL CHANGES, ALL OF WHICH ARE
LISTED IN THE PREFACE. THE LARGEST REVISION INCORPORATES A NEW CHAPTER
(TEN), WHICH PRESENTS SOME OF THE ESSENTIALS OF PROGRESS MADE OVER THE
LAST DECADES IN COMPUTING GROEBNER BASES. THE BOOK ALSO INCLUDES CURRENT
COMPUTER ALGEBRA MATERIAL IN APPENDIX C AND UPDATED INDEPENDENT PROJECTS
(APPENDIX D).THE BOOK MAY SERVE AS A FIRST OR SECOND COURSE IN
UNDERGRADUATE ABSTRACT ALGEBRA AND, WITH SOME SUPPLEMENTATION PERHAPS,
FOR BEGINNING GRADUATE LEVEL COURSES IN ALGEBRAIC GEOMETRY OR
COMPUTATIONAL ALGEBRA. PREREQUISITES FOR THE READER INCLUDE LINEAR
ALGEBRA AND A PROOF-ORIENTED COURSE. IT IS ASSUMED THAT THE READER HAS
ACCESS TO A COMPUTER ALGEBRA SYSTEM. APPENDIX C DESCRIBES FEATURES OF
MAPLE™, MATHEMATICA, AND SAGE, AS WELL AS OTHER SYSTEMS THAT ARE
MOST RELEVANT TO THE TEXT. PSEUDOCODE IS USED IN THE TEXT; APPENDIX B
CAREFULLY DESCRIBES THE PSEUDOCODE USED. FROM THE REVIEWS OF PREVIOUS
EDITIONS: “…THE BOOK GIVES AN INTRODUCTION TO BUCHBERGER’S
ALGORITHM WITH APPLICATIONS TO SYZYGIES, HILBERT POLYNOMIALS, PRIMARY
DECOMPOSITIONS. THERE IS AN INTRODUCTION TO CLASSICAL ALGEBRAIC GEOMETRY
WITH APPLICATIONS TO THE IDEAL MEMBERSHIP PROBLEM, SOLVING POLYNOMIAL
EQUATIONS, AND ELIMINATION THEORY. …THE BOOK IS WELL-WRITTEN.…THE
REVIEWER IS SURE THAT IT WILL BE AN EXCELLENT GUIDE TO INTRODUCE FURTHER
UNDERGRADUATES IN THE ALGORITHMIC ASPECT OF COMMUTATIVE ALGEBRA AND
ALGEBRAIC GEOMETRY.” —PETER SCHENZEL, ZBMATH, 2007 “I CONSIDER THE
BOOK TO BE WONDERFUL. ... THE EXPOSITION IS VERY CLEAR, THERE ARE MANY
HELPFUL PICTURES, AND THERE ARE A GREAT MANY INSTRUCTIVE EXERCISES, SOME
QUITE CHALLENGING ... OFFERS THE HEART AND SOUL OF MODERN COMMUTATIVE
AND ALGEBRAIC GEOMETRY.” —THE AMERICAN MATHEMATICAL MONTHLY
DIESES SCHRIFTSTUECK WURDE MASCHINELL ERZEUGT.
|
any_adam_object | 1 |
author | Cox, David A. 1948- Little, John O'Shea, Donal 1952- |
author_GND | (DE-588)137410832 (DE-588)113289731 |
author_facet | Cox, David A. 1948- Little, John O'Shea, Donal 1952- |
author_role | aut aut aut |
author_sort | Cox, David A. 1948- |
author_variant | d a c da dac j l jl d o do |
building | Verbundindex |
bvnumber | BV042544502 |
classification_rvk | SK 240 |
classification_tum | MAT 535f MAT 000 MAT 130f MAT 140f |
collection | ZDB-2-SMA |
ctrlnum | (OCoLC)910404318 (DE-599)BVBBV042544502 |
dewey-full | 516.35 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 516 - Geometry |
dewey-raw | 516.35 |
dewey-search | 516.35 |
dewey-sort | 3516.35 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
doi_str_mv | 10.1007/978-3-319-16721-3 |
edition | 4. ed. |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>04287nmm a2200913zc 4500</leader><controlfield tag="001">BV042544502</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20210913 </controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">150506s2015 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783319167213</subfield><subfield code="c">Online</subfield><subfield code="9">978-3-319-16721-3</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/978-3-319-16721-3</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)910404318</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV042544502</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-91</subfield><subfield code="a">DE-19</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-20</subfield><subfield code="a">DE-739</subfield><subfield code="a">DE-634</subfield><subfield code="a">DE-861</subfield><subfield code="a">DE-83</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">516.35</subfield><subfield code="2">22</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">516.35</subfield><subfield code="2">23</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 240</subfield><subfield code="0">(DE-625)143226:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 535f</subfield><subfield code="2">stub</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 000</subfield><subfield code="2">stub</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 130f</subfield><subfield code="2">stub</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 140f</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Cox, David A.</subfield><subfield code="d">1948-</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)137410832</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Ideals, varieties, and algorithms</subfield><subfield code="b">an introduction to computational algebraic geometry and commutative algebra</subfield><subfield code="c">David A. Cox ; John Little ; Donal O'Shea</subfield></datafield><datafield tag="250" ind1=" " ind2=" "><subfield code="a">4. ed.</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Cham [u.a.]</subfield><subfield code="b">Springer</subfield><subfield code="c">2015</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (XVI, 646 S.)</subfield><subfield code="b">95 illus., 10 illus. in color</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Undergraduate texts in mathematics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Geometry, algebraic</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Algebra</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Computer software</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Logic, Symbolic and mathematical</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Algebraic Geometry</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Commutative Rings and Algebras</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematical Logic and Foundations</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematical Software</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematik</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Datenverarbeitung</subfield><subfield code="0">(DE-588)4011152-0</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Algebraische Geometrie</subfield><subfield code="0">(DE-588)4001161-6</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Algorithmische Geometrie</subfield><subfield code="0">(DE-588)4130267-9</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Kommutative Algebra</subfield><subfield code="0">(DE-588)4164821-3</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Computeralgebra</subfield><subfield code="0">(DE-588)4010449-7</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Algebraische Geometrie</subfield><subfield code="0">(DE-588)4001161-6</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Computeralgebra</subfield><subfield code="0">(DE-588)4010449-7</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Kommutative Algebra</subfield><subfield code="0">(DE-588)4164821-3</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2="1"><subfield code="a">Computeralgebra</subfield><subfield code="0">(DE-588)4010449-7</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="2" ind2="0"><subfield code="a">Kommutative Algebra</subfield><subfield code="0">(DE-588)4164821-3</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="2" ind2="1"><subfield code="a">Datenverarbeitung</subfield><subfield code="0">(DE-588)4011152-0</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="2" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="3" ind2="0"><subfield code="a">Algebraische Geometrie</subfield><subfield code="0">(DE-588)4001161-6</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="3" ind2="1"><subfield code="a">Algorithmische Geometrie</subfield><subfield code="0">(DE-588)4130267-9</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="3" ind2=" "><subfield code="8">2\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Little, John</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">O'Shea, Donal</subfield><subfield code="d">1952-</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)113289731</subfield><subfield code="4">aut</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">978-3-319-16720-6</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1007/978-3-319-16721-3</subfield><subfield code="x">Verlag</subfield><subfield code="z">URL des Erstveröffentlichers</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">Springer Fremddatenuebernahme</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=027978508&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">Springer Fremddatenuebernahme</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=027978508&sequence=000003&line_number=0002&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Abstract</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-2-SMA</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">UBY_PDA_SMA</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">ZDB-2-SMA_2015</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-027978508</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-3-319-16721-3</subfield><subfield code="l">BTU01</subfield><subfield code="p">ZDB-2-SMA</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-3-319-16721-3</subfield><subfield code="l">FRO01</subfield><subfield code="p">ZDB-2-SMA</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-3-319-16721-3</subfield><subfield code="l">TUM01</subfield><subfield code="p">ZDB-2-SMA</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-3-319-16721-3</subfield><subfield code="l">UBM01</subfield><subfield code="p">ZDB-2-SMA</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-3-319-16721-3</subfield><subfield code="l">UBT01</subfield><subfield code="p">ZDB-2-SMA</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-3-319-16721-3</subfield><subfield code="l">UBW01</subfield><subfield code="p">ZDB-2-SMA</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-3-319-16721-3</subfield><subfield code="l">UPA01</subfield><subfield code="p">ZDB-2-SMA</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV042544502 |
illustrated | Illustrated |
indexdate | 2024-07-10T01:24:34Z |
institution | BVB |
isbn | 9783319167213 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-027978508 |
oclc_num | 910404318 |
open_access_boolean | |
owner | DE-91 DE-BY-TUM DE-19 DE-BY-UBM DE-703 DE-20 DE-739 DE-634 DE-861 DE-83 |
owner_facet | DE-91 DE-BY-TUM DE-19 DE-BY-UBM DE-703 DE-20 DE-739 DE-634 DE-861 DE-83 |
physical | 1 Online-Ressource (XVI, 646 S.) 95 illus., 10 illus. in color |
psigel | ZDB-2-SMA UBY_PDA_SMA ZDB-2-SMA_2015 |
publishDate | 2015 |
publishDateSearch | 2015 |
publishDateSort | 2015 |
publisher | Springer |
record_format | marc |
series2 | Undergraduate texts in mathematics |
spelling | Cox, David A. 1948- Verfasser (DE-588)137410832 aut Ideals, varieties, and algorithms an introduction to computational algebraic geometry and commutative algebra David A. Cox ; John Little ; Donal O'Shea 4. ed. Cham [u.a.] Springer 2015 1 Online-Ressource (XVI, 646 S.) 95 illus., 10 illus. in color txt rdacontent c rdamedia cr rdacarrier Undergraduate texts in mathematics Mathematics Geometry, algebraic Algebra Computer software Logic, Symbolic and mathematical Algebraic Geometry Commutative Rings and Algebras Mathematical Logic and Foundations Mathematical Software Mathematik Datenverarbeitung (DE-588)4011152-0 gnd rswk-swf Algebraische Geometrie (DE-588)4001161-6 gnd rswk-swf Algorithmische Geometrie (DE-588)4130267-9 gnd rswk-swf Kommutative Algebra (DE-588)4164821-3 gnd rswk-swf Computeralgebra (DE-588)4010449-7 gnd rswk-swf Algebraische Geometrie (DE-588)4001161-6 s Computeralgebra (DE-588)4010449-7 s DE-604 Kommutative Algebra (DE-588)4164821-3 s Datenverarbeitung (DE-588)4011152-0 s 1\p DE-604 Algorithmische Geometrie (DE-588)4130267-9 s 2\p DE-604 Little, John Verfasser aut O'Shea, Donal 1952- Verfasser (DE-588)113289731 aut Erscheint auch als Druck-Ausgabe 978-3-319-16720-6 https://doi.org/10.1007/978-3-319-16721-3 Verlag URL des Erstveröffentlichers Volltext Springer Fremddatenuebernahme application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=027978508&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis Springer Fremddatenuebernahme application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=027978508&sequence=000003&line_number=0002&func_code=DB_RECORDS&service_type=MEDIA Abstract 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 2\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Cox, David A. 1948- Little, John O'Shea, Donal 1952- Ideals, varieties, and algorithms an introduction to computational algebraic geometry and commutative algebra Mathematics Geometry, algebraic Algebra Computer software Logic, Symbolic and mathematical Algebraic Geometry Commutative Rings and Algebras Mathematical Logic and Foundations Mathematical Software Mathematik Datenverarbeitung (DE-588)4011152-0 gnd Algebraische Geometrie (DE-588)4001161-6 gnd Algorithmische Geometrie (DE-588)4130267-9 gnd Kommutative Algebra (DE-588)4164821-3 gnd Computeralgebra (DE-588)4010449-7 gnd |
subject_GND | (DE-588)4011152-0 (DE-588)4001161-6 (DE-588)4130267-9 (DE-588)4164821-3 (DE-588)4010449-7 |
title | Ideals, varieties, and algorithms an introduction to computational algebraic geometry and commutative algebra |
title_auth | Ideals, varieties, and algorithms an introduction to computational algebraic geometry and commutative algebra |
title_exact_search | Ideals, varieties, and algorithms an introduction to computational algebraic geometry and commutative algebra |
title_full | Ideals, varieties, and algorithms an introduction to computational algebraic geometry and commutative algebra David A. Cox ; John Little ; Donal O'Shea |
title_fullStr | Ideals, varieties, and algorithms an introduction to computational algebraic geometry and commutative algebra David A. Cox ; John Little ; Donal O'Shea |
title_full_unstemmed | Ideals, varieties, and algorithms an introduction to computational algebraic geometry and commutative algebra David A. Cox ; John Little ; Donal O'Shea |
title_short | Ideals, varieties, and algorithms |
title_sort | ideals varieties and algorithms an introduction to computational algebraic geometry and commutative algebra |
title_sub | an introduction to computational algebraic geometry and commutative algebra |
topic | Mathematics Geometry, algebraic Algebra Computer software Logic, Symbolic and mathematical Algebraic Geometry Commutative Rings and Algebras Mathematical Logic and Foundations Mathematical Software Mathematik Datenverarbeitung (DE-588)4011152-0 gnd Algebraische Geometrie (DE-588)4001161-6 gnd Algorithmische Geometrie (DE-588)4130267-9 gnd Kommutative Algebra (DE-588)4164821-3 gnd Computeralgebra (DE-588)4010449-7 gnd |
topic_facet | Mathematics Geometry, algebraic Algebra Computer software Logic, Symbolic and mathematical Algebraic Geometry Commutative Rings and Algebras Mathematical Logic and Foundations Mathematical Software Mathematik Datenverarbeitung Algebraische Geometrie Algorithmische Geometrie Kommutative Algebra Computeralgebra |
url | https://doi.org/10.1007/978-3-319-16721-3 http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=027978508&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=027978508&sequence=000003&line_number=0002&func_code=DB_RECORDS&service_type=MEDIA |
work_keys_str_mv | AT coxdavida idealsvarietiesandalgorithmsanintroductiontocomputationalalgebraicgeometryandcommutativealgebra AT littlejohn idealsvarietiesandalgorithmsanintroductiontocomputationalalgebraicgeometryandcommutativealgebra AT osheadonal idealsvarietiesandalgorithmsanintroductiontocomputationalalgebraicgeometryandcommutativealgebra |