Multi-parameter singular integrals:
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Princeton, N.J.
Princeton University Press
[2014]
|
Schriftenreihe: | Annals of Mathematics Studies
number 189 |
Schlagworte: | |
Online-Zugang: | Volltext |
Beschreibung: | This book develops a new theory of multi-parameter singular integrals associated with Carnot-Carathéodory balls. Brian Street first details the classical theory of Calderón-Zygmund singular integrals and applications to linear partial differential equations. He then outlines the theory of multi-parameter Carnot-Carathéodory geometry, where the main tool is a quantitative version of the classical theorem of Frobenius. Street then gives several examples of multi-parameter singular integrals arising naturally in various problems. The final chapter of the book develops a general theory of singular integrals that generalizes and unifies these examples. This is one of the first general theories of multi-parameter singular integrals that goes beyond the product theory of singular integrals and their analogs. Multi-parameter Singular Integrals will interest graduate students and researchers working in singular integrals and related fields |
Beschreibung: | 1 Online-Ressource (416p.) |
ISBN: | 9781400852758 |
DOI: | 10.1515/9781400852758 |
Internformat
MARC
LEADER | 00000nam a2200000 cb4500 | ||
---|---|---|---|
001 | BV042523212 | ||
003 | DE-604 | ||
005 | 20200403 | ||
007 | cr|uuu---uuuuu | ||
008 | 150423s2014 xx o|||| 00||| eng d | ||
020 | |a 9781400852758 |9 978-1-4008-5275-8 | ||
024 | 7 | |a 10.1515/9781400852758 |2 doi | |
035 | |a (OCoLC)881286436 | ||
035 | |a (DE-599)BVBBV042523212 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-859 |a DE-860 |a DE-739 |a DE-1046 |a DE-83 |a DE-1043 |a DE-858 | ||
082 | 0 | |a 515/.98 |2 23 | |
100 | 1 | |a Street, Brian |d 1981- |0 (DE-588)1074231368 |4 aut | |
245 | 1 | 0 | |a Multi-parameter singular integrals |c Brian Street |
264 | 1 | |a Princeton, N.J. |b Princeton University Press |c [2014] | |
264 | 4 | |c © 2014 | |
300 | |a 1 Online-Ressource (416p.) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 1 | |a Annals of Mathematics Studies |v number 189 | |
500 | |a This book develops a new theory of multi-parameter singular integrals associated with Carnot-Carathéodory balls. Brian Street first details the classical theory of Calderón-Zygmund singular integrals and applications to linear partial differential equations. He then outlines the theory of multi-parameter Carnot-Carathéodory geometry, where the main tool is a quantitative version of the classical theorem of Frobenius. Street then gives several examples of multi-parameter singular integrals arising naturally in various problems. The final chapter of the book develops a general theory of singular integrals that generalizes and unifies these examples. This is one of the first general theories of multi-parameter singular integrals that goes beyond the product theory of singular integrals and their analogs. Multi-parameter Singular Integrals will interest graduate students and researchers working in singular integrals and related fields | ||
546 | |a In English | ||
650 | 4 | |a Mathematik | |
650 | 4 | |a Singular integrals | |
650 | 4 | |a Transformations (Mathematics) | |
650 | 7 | |a MATHEMATICS / Calculus |2 bisacsh | |
650 | 7 | |a MATHEMATICS / Mathematical Analysis |2 bisacsh | |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |z 978-0-691-16251-5 |
830 | 0 | |a Annals of Mathematics Studies |v number 189 |w (DE-604)BV040389493 |9 189 | |
856 | 4 | 0 | |u https://doi.org/10.1515/9781400852758?locatt=mode:legacy |x Verlag |z URL des Erstveröffentlichers |3 Volltext |
912 | |a ZDB-23-DGG | ||
912 | |a ZDB-23-PST | ||
940 | 1 | |q FKE_PDA_DGG | |
940 | 1 | |q FLA_PDA_DGG | |
940 | 1 | |q UPA_PDA_DGG | |
940 | 1 | |q FAW_PDA_DGG | |
940 | 1 | |q FCO_PDA_DGG | |
943 | 1 | |a oai:aleph.bib-bvb.de:BVB01-027957551 |
Datensatz im Suchindex
_version_ | 1824508480754548736 |
---|---|
adam_text | |
any_adam_object | |
author | Street, Brian 1981- |
author_GND | (DE-588)1074231368 |
author_facet | Street, Brian 1981- |
author_role | aut |
author_sort | Street, Brian 1981- |
author_variant | b s bs |
building | Verbundindex |
bvnumber | BV042523212 |
collection | ZDB-23-DGG ZDB-23-PST |
ctrlnum | (OCoLC)881286436 (DE-599)BVBBV042523212 |
dewey-full | 515/.98 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 515 - Analysis |
dewey-raw | 515/.98 |
dewey-search | 515/.98 |
dewey-sort | 3515 298 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
doi_str_mv | 10.1515/9781400852758 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>00000nam a2200000 cb4500</leader><controlfield tag="001">BV042523212</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20200403</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">150423s2014 xx o|||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781400852758</subfield><subfield code="9">978-1-4008-5275-8</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1515/9781400852758</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)881286436</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV042523212</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-859</subfield><subfield code="a">DE-860</subfield><subfield code="a">DE-739</subfield><subfield code="a">DE-1046</subfield><subfield code="a">DE-83</subfield><subfield code="a">DE-1043</subfield><subfield code="a">DE-858</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">515/.98</subfield><subfield code="2">23</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Street, Brian</subfield><subfield code="d">1981-</subfield><subfield code="0">(DE-588)1074231368</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Multi-parameter singular integrals</subfield><subfield code="c">Brian Street</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Princeton, N.J.</subfield><subfield code="b">Princeton University Press</subfield><subfield code="c">[2014]</subfield></datafield><datafield tag="264" ind1=" " ind2="4"><subfield code="c">© 2014</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (416p.)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Annals of Mathematics Studies</subfield><subfield code="v">number 189</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">This book develops a new theory of multi-parameter singular integrals associated with Carnot-Carathéodory balls. Brian Street first details the classical theory of Calderón-Zygmund singular integrals and applications to linear partial differential equations. He then outlines the theory of multi-parameter Carnot-Carathéodory geometry, where the main tool is a quantitative version of the classical theorem of Frobenius. Street then gives several examples of multi-parameter singular integrals arising naturally in various problems. The final chapter of the book develops a general theory of singular integrals that generalizes and unifies these examples. This is one of the first general theories of multi-parameter singular integrals that goes beyond the product theory of singular integrals and their analogs. Multi-parameter Singular Integrals will interest graduate students and researchers working in singular integrals and related fields</subfield></datafield><datafield tag="546" ind1=" " ind2=" "><subfield code="a">In English</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematik</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Singular integrals</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Transformations (Mathematics)</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">MATHEMATICS / Calculus</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">MATHEMATICS / Mathematical Analysis</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">978-0-691-16251-5</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">Annals of Mathematics Studies</subfield><subfield code="v">number 189</subfield><subfield code="w">(DE-604)BV040389493</subfield><subfield code="9">189</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1515/9781400852758?locatt=mode:legacy</subfield><subfield code="x">Verlag</subfield><subfield code="z">URL des Erstveröffentlichers</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-23-DGG</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-23-PST</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">FKE_PDA_DGG</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">FLA_PDA_DGG</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">UPA_PDA_DGG</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">FAW_PDA_DGG</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">FCO_PDA_DGG</subfield></datafield><datafield tag="943" ind1="1" ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-027957551</subfield></datafield></record></collection> |
id | DE-604.BV042523212 |
illustrated | Not Illustrated |
indexdate | 2025-02-19T17:41:17Z |
institution | BVB |
isbn | 9781400852758 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-027957551 |
oclc_num | 881286436 |
open_access_boolean | |
owner | DE-859 DE-860 DE-739 DE-1046 DE-83 DE-1043 DE-858 |
owner_facet | DE-859 DE-860 DE-739 DE-1046 DE-83 DE-1043 DE-858 |
physical | 1 Online-Ressource (416p.) |
psigel | ZDB-23-DGG ZDB-23-PST FKE_PDA_DGG FLA_PDA_DGG UPA_PDA_DGG FAW_PDA_DGG FCO_PDA_DGG |
publishDate | 2014 |
publishDateSearch | 2014 |
publishDateSort | 2014 |
publisher | Princeton University Press |
record_format | marc |
series | Annals of Mathematics Studies |
series2 | Annals of Mathematics Studies |
spelling | Street, Brian 1981- (DE-588)1074231368 aut Multi-parameter singular integrals Brian Street Princeton, N.J. Princeton University Press [2014] © 2014 1 Online-Ressource (416p.) txt rdacontent c rdamedia cr rdacarrier Annals of Mathematics Studies number 189 This book develops a new theory of multi-parameter singular integrals associated with Carnot-Carathéodory balls. Brian Street first details the classical theory of Calderón-Zygmund singular integrals and applications to linear partial differential equations. He then outlines the theory of multi-parameter Carnot-Carathéodory geometry, where the main tool is a quantitative version of the classical theorem of Frobenius. Street then gives several examples of multi-parameter singular integrals arising naturally in various problems. The final chapter of the book develops a general theory of singular integrals that generalizes and unifies these examples. This is one of the first general theories of multi-parameter singular integrals that goes beyond the product theory of singular integrals and their analogs. Multi-parameter Singular Integrals will interest graduate students and researchers working in singular integrals and related fields In English Mathematik Singular integrals Transformations (Mathematics) MATHEMATICS / Calculus bisacsh MATHEMATICS / Mathematical Analysis bisacsh Erscheint auch als Druck-Ausgabe 978-0-691-16251-5 Annals of Mathematics Studies number 189 (DE-604)BV040389493 189 https://doi.org/10.1515/9781400852758?locatt=mode:legacy Verlag URL des Erstveröffentlichers Volltext |
spellingShingle | Street, Brian 1981- Multi-parameter singular integrals Annals of Mathematics Studies Mathematik Singular integrals Transformations (Mathematics) MATHEMATICS / Calculus bisacsh MATHEMATICS / Mathematical Analysis bisacsh |
title | Multi-parameter singular integrals |
title_auth | Multi-parameter singular integrals |
title_exact_search | Multi-parameter singular integrals |
title_full | Multi-parameter singular integrals Brian Street |
title_fullStr | Multi-parameter singular integrals Brian Street |
title_full_unstemmed | Multi-parameter singular integrals Brian Street |
title_short | Multi-parameter singular integrals |
title_sort | multi parameter singular integrals |
topic | Mathematik Singular integrals Transformations (Mathematics) MATHEMATICS / Calculus bisacsh MATHEMATICS / Mathematical Analysis bisacsh |
topic_facet | Mathematik Singular integrals Transformations (Mathematics) MATHEMATICS / Calculus MATHEMATICS / Mathematical Analysis |
url | https://doi.org/10.1515/9781400852758?locatt=mode:legacy |
volume_link | (DE-604)BV040389493 |
work_keys_str_mv | AT streetbrian multiparametersingularintegrals |