Hodge Theory:
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Princeton, N.J.
Princeton University Press
[2014]
|
Schriftenreihe: | Mathematical Notes
49 |
Schlagworte: | |
Online-Zugang: | TUM01 Volltext |
Beschreibung: | 608p. |
ISBN: | 9781400851478 9781306783668 |
DOI: | 10.1515/9781400851478 |
Internformat
MARC
LEADER | 00000nmm a2200000zcb4500 | ||
---|---|---|---|
001 | BV042523194 | ||
003 | DE-604 | ||
005 | 20170809 | ||
007 | cr|uuu---uuuuu | ||
008 | 150423s2014 |||| o||u| ||||||eng d | ||
020 | |a 9781400851478 |9 978-1-4008-5147-8 | ||
020 | |a 9781306783668 |9 978-1-306-78366-8 | ||
024 | 7 | |a 10.1515/9781400851478 |2 doi | |
035 | |a (OCoLC)882259923 | ||
035 | |a (DE-599)BVBBV042523194 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
049 | |a DE-859 |a DE-860 |a DE-Aug4 |a DE-91 |a DE-739 |a DE-1046 |a DE-1043 |a DE-858 | ||
082 | 0 | |a 514.223 |2 23 | |
084 | |a SI 850 |0 (DE-625)143199: |2 rvk | ||
084 | |a SK 370 |0 (DE-625)143234: |2 rvk | ||
084 | |a SI 870 |0 (DE-625)143208: |2 rvk | ||
084 | |a MAT 149f |2 stub | ||
100 | 1 | |a Lê, Dũng Tráng |d 1947- |e Verfasser |0 (DE-588)138156530 |4 aut | |
245 | 1 | 0 | |a Hodge Theory |c Lê Dung Tráng, Eduardo Cattani, Fouad El Zein, Phillip A. Griffiths |
264 | 1 | |a Princeton, N.J. |b Princeton University Press |c [2014] | |
300 | |a 608p. | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
340 | |a Online-Ressource | ||
490 | 1 | |a Mathematical Notes |v 49 | |
505 | 8 | |a This book provides a comprehensive and up-to-date introduction to Hodge theory—one of the central and most vibrant areas of contemporary mathematics—from leading specialists on the subject. The topics range from the basic topology of algebraic varieties to the study of variations of mixed Hodge structure and the Hodge theory of maps. Of particular interest is the study of algebraic cycles, including the Hodge and Bloch-Beilinson Conjectures. Based on lectures delivered at the 2010 Summer School on Hodge Theory at the ICTP in Trieste, Italy, the book is intended for a broad group of students and researchers. The exposition is as accessible as possible and doesn’t require a deep background. At the same time, the book presents some topics at the forefront of current research.The book is divided between introductory and advanced lectures. The introductory lectures address Kähler manifolds, variations of Hodge structure, mixed Hodge structures, the Hodge theory of maps, period domains and period mappings, algebraic cycles (up to and including the Bloch-Beilinson conjecture) and Chow groups, sheaf cohomology, and a new treatment of Grothendieck’s algebraic de Rham theorem. The advanced lectures address a Hodge-theoretic perspective on Shimura varieties, the spread philosophy in the study of algebraic cycles, absolute Hodge classes (including a new, self-contained proof of Deligne’s theorem on absolute Hodge cycles), and variation of mixed Hodge structures.The contributors include Patrick Brosnan, James Carlson, Eduardo Cattani, François Charles, Mark Andrea de Cataldo, Fouad El Zein, Mark L. Green, Phillip A. Griffiths, Matt Kerr, Lê D?ng Tráng, Luca Migliorini, Jacob P. Murre, Christian Schnell, and Loring W. Tu | |
546 | |a In English | ||
650 | 4 | |a Mathematik | |
650 | 4 | |a Manifolds (Mathematics) / Congresses | |
650 | 0 | 7 | |a Hodge-Theorie |0 (DE-588)4135967-7 |2 gnd |9 rswk-swf |
655 | 7 | |0 (DE-588)1071861417 |a Konferenzschrift |2 gnd-content | |
689 | 0 | 0 | |a Hodge-Theorie |0 (DE-588)4135967-7 |D s |
689 | 0 | |5 DE-604 | |
700 | 1 | |a Cattani, Eduardo |e Sonstige |4 oth | |
700 | 1 | |a El Zein, Fouad |e Sonstige |4 oth | |
700 | 1 | |a Griffiths, Phillip |d 1938- |e Sonstige |0 (DE-588)131881434 |4 oth | |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |z 978-0-691-16134-1 |
830 | 0 | |a Mathematical Notes |v 49 |w (DE-604)BV013563374 |9 49 | |
856 | 4 | 0 | |u https://doi.org/10.1515/9781400851478 |x Verlag |z URL des Erstveröffentlichers |3 Volltext |
912 | |a ZDB-23-DGG |a ZDB-26-MYL | ||
940 | 1 | |q FKE_PDA_DGG | |
940 | 1 | |q FLA_PDA_DGG | |
940 | 1 | |q FHA_PDA_DGG | |
940 | 1 | |q UPA_PDA_DGG | |
940 | 1 | |q FAW_PDA_DGG | |
940 | 1 | |q FCO_PDA_DGG | |
999 | |a oai:aleph.bib-bvb.de:BVB01-027957533 | ||
966 | e | |u https://ebookcentral.proquest.com/lib/munchentech/detail.action?docID=1642468 |l TUM01 |p ZDB-26-MYL |q TUM_PDA_MIL_Kauf |x Aggregator |3 Volltext |
Datensatz im Suchindex
_version_ | 1804153276789161984 |
---|---|
any_adam_object | |
author | Lê, Dũng Tráng 1947- |
author_GND | (DE-588)138156530 (DE-588)131881434 |
author_facet | Lê, Dũng Tráng 1947- |
author_role | aut |
author_sort | Lê, Dũng Tráng 1947- |
author_variant | d t l dt dtl |
building | Verbundindex |
bvnumber | BV042523194 |
classification_rvk | SI 850 SK 370 SI 870 |
classification_tum | MAT 149f |
collection | ZDB-23-DGG ZDB-26-MYL |
contents | This book provides a comprehensive and up-to-date introduction to Hodge theory—one of the central and most vibrant areas of contemporary mathematics—from leading specialists on the subject. The topics range from the basic topology of algebraic varieties to the study of variations of mixed Hodge structure and the Hodge theory of maps. Of particular interest is the study of algebraic cycles, including the Hodge and Bloch-Beilinson Conjectures. Based on lectures delivered at the 2010 Summer School on Hodge Theory at the ICTP in Trieste, Italy, the book is intended for a broad group of students and researchers. The exposition is as accessible as possible and doesn’t require a deep background. At the same time, the book presents some topics at the forefront of current research.The book is divided between introductory and advanced lectures. The introductory lectures address Kähler manifolds, variations of Hodge structure, mixed Hodge structures, the Hodge theory of maps, period domains and period mappings, algebraic cycles (up to and including the Bloch-Beilinson conjecture) and Chow groups, sheaf cohomology, and a new treatment of Grothendieck’s algebraic de Rham theorem. The advanced lectures address a Hodge-theoretic perspective on Shimura varieties, the spread philosophy in the study of algebraic cycles, absolute Hodge classes (including a new, self-contained proof of Deligne’s theorem on absolute Hodge cycles), and variation of mixed Hodge structures.The contributors include Patrick Brosnan, James Carlson, Eduardo Cattani, François Charles, Mark Andrea de Cataldo, Fouad El Zein, Mark L. Green, Phillip A. Griffiths, Matt Kerr, Lê D?ng Tráng, Luca Migliorini, Jacob P. Murre, Christian Schnell, and Loring W. Tu |
ctrlnum | (OCoLC)882259923 (DE-599)BVBBV042523194 |
dewey-full | 514.223 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 514 - Topology |
dewey-raw | 514.223 |
dewey-search | 514.223 |
dewey-sort | 3514.223 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
doi_str_mv | 10.1515/9781400851478 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>04046nmm a2200625zcb4500</leader><controlfield tag="001">BV042523194</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20170809 </controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">150423s2014 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781400851478</subfield><subfield code="9">978-1-4008-5147-8</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781306783668</subfield><subfield code="9">978-1-306-78366-8</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1515/9781400851478</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)882259923</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV042523194</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-859</subfield><subfield code="a">DE-860</subfield><subfield code="a">DE-Aug4</subfield><subfield code="a">DE-91</subfield><subfield code="a">DE-739</subfield><subfield code="a">DE-1046</subfield><subfield code="a">DE-1043</subfield><subfield code="a">DE-858</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">514.223</subfield><subfield code="2">23</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SI 850</subfield><subfield code="0">(DE-625)143199:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 370</subfield><subfield code="0">(DE-625)143234:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SI 870</subfield><subfield code="0">(DE-625)143208:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 149f</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Lê, Dũng Tráng</subfield><subfield code="d">1947-</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)138156530</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Hodge Theory</subfield><subfield code="c">Lê Dung Tráng, Eduardo Cattani, Fouad El Zein, Phillip A. Griffiths</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Princeton, N.J.</subfield><subfield code="b">Princeton University Press</subfield><subfield code="c">[2014]</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">608p.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="340" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Mathematical Notes</subfield><subfield code="v">49</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">This book provides a comprehensive and up-to-date introduction to Hodge theory—one of the central and most vibrant areas of contemporary mathematics—from leading specialists on the subject. The topics range from the basic topology of algebraic varieties to the study of variations of mixed Hodge structure and the Hodge theory of maps. Of particular interest is the study of algebraic cycles, including the Hodge and Bloch-Beilinson Conjectures. Based on lectures delivered at the 2010 Summer School on Hodge Theory at the ICTP in Trieste, Italy, the book is intended for a broad group of students and researchers. The exposition is as accessible as possible and doesn’t require a deep background. At the same time, the book presents some topics at the forefront of current research.The book is divided between introductory and advanced lectures. The introductory lectures address Kähler manifolds, variations of Hodge structure, mixed Hodge structures, the Hodge theory of maps, period domains and period mappings, algebraic cycles (up to and including the Bloch-Beilinson conjecture) and Chow groups, sheaf cohomology, and a new treatment of Grothendieck’s algebraic de Rham theorem. The advanced lectures address a Hodge-theoretic perspective on Shimura varieties, the spread philosophy in the study of algebraic cycles, absolute Hodge classes (including a new, self-contained proof of Deligne’s theorem on absolute Hodge cycles), and variation of mixed Hodge structures.The contributors include Patrick Brosnan, James Carlson, Eduardo Cattani, François Charles, Mark Andrea de Cataldo, Fouad El Zein, Mark L. Green, Phillip A. Griffiths, Matt Kerr, Lê D?ng Tráng, Luca Migliorini, Jacob P. Murre, Christian Schnell, and Loring W. Tu</subfield></datafield><datafield tag="546" ind1=" " ind2=" "><subfield code="a">In English</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematik</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Manifolds (Mathematics) / Congresses</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Hodge-Theorie</subfield><subfield code="0">(DE-588)4135967-7</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="655" ind1=" " ind2="7"><subfield code="0">(DE-588)1071861417</subfield><subfield code="a">Konferenzschrift</subfield><subfield code="2">gnd-content</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Hodge-Theorie</subfield><subfield code="0">(DE-588)4135967-7</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Cattani, Eduardo</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">El Zein, Fouad</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Griffiths, Phillip</subfield><subfield code="d">1938-</subfield><subfield code="e">Sonstige</subfield><subfield code="0">(DE-588)131881434</subfield><subfield code="4">oth</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">978-0-691-16134-1</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">Mathematical Notes</subfield><subfield code="v">49</subfield><subfield code="w">(DE-604)BV013563374</subfield><subfield code="9">49</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1515/9781400851478</subfield><subfield code="x">Verlag</subfield><subfield code="z">URL des Erstveröffentlichers</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-23-DGG</subfield><subfield code="a">ZDB-26-MYL</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">FKE_PDA_DGG</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">FLA_PDA_DGG</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">FHA_PDA_DGG</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">UPA_PDA_DGG</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">FAW_PDA_DGG</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">FCO_PDA_DGG</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-027957533</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://ebookcentral.proquest.com/lib/munchentech/detail.action?docID=1642468</subfield><subfield code="l">TUM01</subfield><subfield code="p">ZDB-26-MYL</subfield><subfield code="q">TUM_PDA_MIL_Kauf</subfield><subfield code="x">Aggregator</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
genre | (DE-588)1071861417 Konferenzschrift gnd-content |
genre_facet | Konferenzschrift |
id | DE-604.BV042523194 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T01:24:02Z |
institution | BVB |
isbn | 9781400851478 9781306783668 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-027957533 |
oclc_num | 882259923 |
open_access_boolean | |
owner | DE-859 DE-860 DE-Aug4 DE-91 DE-BY-TUM DE-739 DE-1046 DE-1043 DE-858 |
owner_facet | DE-859 DE-860 DE-Aug4 DE-91 DE-BY-TUM DE-739 DE-1046 DE-1043 DE-858 |
physical | 608p. |
psigel | ZDB-23-DGG ZDB-26-MYL FKE_PDA_DGG FLA_PDA_DGG FHA_PDA_DGG UPA_PDA_DGG FAW_PDA_DGG FCO_PDA_DGG ZDB-26-MYL TUM_PDA_MIL_Kauf |
publishDate | 2014 |
publishDateSearch | 2014 |
publishDateSort | 2014 |
publisher | Princeton University Press |
record_format | marc |
series | Mathematical Notes |
series2 | Mathematical Notes |
spelling | Lê, Dũng Tráng 1947- Verfasser (DE-588)138156530 aut Hodge Theory Lê Dung Tráng, Eduardo Cattani, Fouad El Zein, Phillip A. Griffiths Princeton, N.J. Princeton University Press [2014] 608p. txt rdacontent c rdamedia cr rdacarrier Online-Ressource Mathematical Notes 49 This book provides a comprehensive and up-to-date introduction to Hodge theory—one of the central and most vibrant areas of contemporary mathematics—from leading specialists on the subject. The topics range from the basic topology of algebraic varieties to the study of variations of mixed Hodge structure and the Hodge theory of maps. Of particular interest is the study of algebraic cycles, including the Hodge and Bloch-Beilinson Conjectures. Based on lectures delivered at the 2010 Summer School on Hodge Theory at the ICTP in Trieste, Italy, the book is intended for a broad group of students and researchers. The exposition is as accessible as possible and doesn’t require a deep background. At the same time, the book presents some topics at the forefront of current research.The book is divided between introductory and advanced lectures. The introductory lectures address Kähler manifolds, variations of Hodge structure, mixed Hodge structures, the Hodge theory of maps, period domains and period mappings, algebraic cycles (up to and including the Bloch-Beilinson conjecture) and Chow groups, sheaf cohomology, and a new treatment of Grothendieck’s algebraic de Rham theorem. The advanced lectures address a Hodge-theoretic perspective on Shimura varieties, the spread philosophy in the study of algebraic cycles, absolute Hodge classes (including a new, self-contained proof of Deligne’s theorem on absolute Hodge cycles), and variation of mixed Hodge structures.The contributors include Patrick Brosnan, James Carlson, Eduardo Cattani, François Charles, Mark Andrea de Cataldo, Fouad El Zein, Mark L. Green, Phillip A. Griffiths, Matt Kerr, Lê D?ng Tráng, Luca Migliorini, Jacob P. Murre, Christian Schnell, and Loring W. Tu In English Mathematik Manifolds (Mathematics) / Congresses Hodge-Theorie (DE-588)4135967-7 gnd rswk-swf (DE-588)1071861417 Konferenzschrift gnd-content Hodge-Theorie (DE-588)4135967-7 s DE-604 Cattani, Eduardo Sonstige oth El Zein, Fouad Sonstige oth Griffiths, Phillip 1938- Sonstige (DE-588)131881434 oth Erscheint auch als Druck-Ausgabe 978-0-691-16134-1 Mathematical Notes 49 (DE-604)BV013563374 49 https://doi.org/10.1515/9781400851478 Verlag URL des Erstveröffentlichers Volltext |
spellingShingle | Lê, Dũng Tráng 1947- Hodge Theory Mathematical Notes This book provides a comprehensive and up-to-date introduction to Hodge theory—one of the central and most vibrant areas of contemporary mathematics—from leading specialists on the subject. The topics range from the basic topology of algebraic varieties to the study of variations of mixed Hodge structure and the Hodge theory of maps. Of particular interest is the study of algebraic cycles, including the Hodge and Bloch-Beilinson Conjectures. Based on lectures delivered at the 2010 Summer School on Hodge Theory at the ICTP in Trieste, Italy, the book is intended for a broad group of students and researchers. The exposition is as accessible as possible and doesn’t require a deep background. At the same time, the book presents some topics at the forefront of current research.The book is divided between introductory and advanced lectures. The introductory lectures address Kähler manifolds, variations of Hodge structure, mixed Hodge structures, the Hodge theory of maps, period domains and period mappings, algebraic cycles (up to and including the Bloch-Beilinson conjecture) and Chow groups, sheaf cohomology, and a new treatment of Grothendieck’s algebraic de Rham theorem. The advanced lectures address a Hodge-theoretic perspective on Shimura varieties, the spread philosophy in the study of algebraic cycles, absolute Hodge classes (including a new, self-contained proof of Deligne’s theorem on absolute Hodge cycles), and variation of mixed Hodge structures.The contributors include Patrick Brosnan, James Carlson, Eduardo Cattani, François Charles, Mark Andrea de Cataldo, Fouad El Zein, Mark L. Green, Phillip A. Griffiths, Matt Kerr, Lê D?ng Tráng, Luca Migliorini, Jacob P. Murre, Christian Schnell, and Loring W. Tu Mathematik Manifolds (Mathematics) / Congresses Hodge-Theorie (DE-588)4135967-7 gnd |
subject_GND | (DE-588)4135967-7 (DE-588)1071861417 |
title | Hodge Theory |
title_auth | Hodge Theory |
title_exact_search | Hodge Theory |
title_full | Hodge Theory Lê Dung Tráng, Eduardo Cattani, Fouad El Zein, Phillip A. Griffiths |
title_fullStr | Hodge Theory Lê Dung Tráng, Eduardo Cattani, Fouad El Zein, Phillip A. Griffiths |
title_full_unstemmed | Hodge Theory Lê Dung Tráng, Eduardo Cattani, Fouad El Zein, Phillip A. Griffiths |
title_short | Hodge Theory |
title_sort | hodge theory |
topic | Mathematik Manifolds (Mathematics) / Congresses Hodge-Theorie (DE-588)4135967-7 gnd |
topic_facet | Mathematik Manifolds (Mathematics) / Congresses Hodge-Theorie Konferenzschrift |
url | https://doi.org/10.1515/9781400851478 |
volume_link | (DE-604)BV013563374 |
work_keys_str_mv | AT ledungtrang hodgetheory AT cattanieduardo hodgetheory AT elzeinfouad hodgetheory AT griffithsphillip hodgetheory |