Hangzhou lectures on eigenfunctions of the Laplacian:
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Princeton, N.J.
Princeton University Press
[2014]
|
Schriftenreihe: | Annals of Mathematics Studies
number 188 |
Schlagworte: | |
Online-Zugang: | Volltext Volltext |
Beschreibung: | Biographical note: SoggeChristopher D.: Christopher D. Sogge is the J. J. Sylvester Professor of Mathematics at Johns Hopkins University. He is the author of "Fourier Integrals in Classical Analysis" and "Lectures on Nonlinear Wave Equations" Main description: Based on lectures given at Zhejiang University in Hangzhou, China, and Johns Hopkins University, this book introduces eigenfunctions on Riemannian manifolds. Christopher Sogge gives a proof of the sharp Weyl formula for the distribution of eigenvalues of Laplace-Beltrami operators, as well as an improved version of the Weyl formula, the Duistermaat-Guillemin theorem under natural assumptions on the geodesic flow. Sogge shows that there is quantum ergodicity of eigenfunctions if the geodesic flow is ergodic.Sogge begins with a treatment of the Hadamard parametrix before proving the first main result, the sharp Weyl formula. He avoids the use of Tauberian estimates and instead relies on sup-norm estimates for eigenfunctions. The author also gives a rapid introduction to the stationary phase and the basics of the theory of pseudodifferential operators and microlocal analysis. These are used to prove the Duistermaat-Guillemin theorem. Turning to the related topic of quantum ergodicity, Sogge demonstrates that if the long-term geodesic flow is uniformly distributed, most eigenfunctions exhibit a similar behavior, in the sense that their mass becomes equidistributed as their frequencies go to infinity |
Beschreibung: | 1 Online-Ressource (208 S.) |
ISBN: | 9781400850549 |
DOI: | 10.1515/9781400850549 |
Internformat
MARC
LEADER | 00000nmm a2200000 cb4500 | ||
---|---|---|---|
001 | BV042523173 | ||
003 | DE-604 | ||
005 | 20200403 | ||
007 | cr|uuu---uuuuu | ||
008 | 150423s2014 |||| o||u| ||||||eng d | ||
020 | |a 9781400850549 |9 978-1-4008-5054-9 | ||
024 | 7 | |a 10.1515/9781400850549 |2 doi | |
035 | |a (OCoLC)869281847 | ||
035 | |a (DE-599)BVBBV042523173 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-859 |a DE-860 |a DE-Aug4 |a DE-739 |a DE-1046 |a DE-83 |a DE-1043 |a DE-858 | ||
084 | |a SI 830 |0 (DE-625)143195: |2 rvk | ||
100 | 1 | |a Sogge, Christopher D. |d 1960- |0 (DE-588)104999275X |4 aut | |
245 | 1 | 0 | |a Hangzhou lectures on eigenfunctions of the Laplacian |
264 | 1 | |a Princeton, N.J. |b Princeton University Press |c [2014] | |
264 | 4 | |c © 2014 | |
300 | |a 1 Online-Ressource (208 S.) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 1 | |a Annals of Mathematics Studies |v number 188 | |
500 | |a Biographical note: SoggeChristopher D.: Christopher D. Sogge is the J. J. Sylvester Professor of Mathematics at Johns Hopkins University. He is the author of "Fourier Integrals in Classical Analysis" and "Lectures on Nonlinear Wave Equations" | ||
500 | |a Main description: Based on lectures given at Zhejiang University in Hangzhou, China, and Johns Hopkins University, this book introduces eigenfunctions on Riemannian manifolds. Christopher Sogge gives a proof of the sharp Weyl formula for the distribution of eigenvalues of Laplace-Beltrami operators, as well as an improved version of the Weyl formula, the Duistermaat-Guillemin theorem under natural assumptions on the geodesic flow. Sogge shows that there is quantum ergodicity of eigenfunctions if the geodesic flow is ergodic.Sogge begins with a treatment of the Hadamard parametrix before proving the first main result, the sharp Weyl formula. He avoids the use of Tauberian estimates and instead relies on sup-norm estimates for eigenfunctions. The author also gives a rapid introduction to the stationary phase and the basics of the theory of pseudodifferential operators and microlocal analysis. These are used to prove the Duistermaat-Guillemin theorem. Turning to the related topic of quantum ergodicity, Sogge demonstrates that if the long-term geodesic flow is uniformly distributed, most eigenfunctions exhibit a similar behavior, in the sense that their mass becomes equidistributed as their frequencies go to infinity | ||
650 | 0 | 7 | |a Laplace-Differentialgleichung |0 (DE-588)4228351-6 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Eigenfunktion |0 (DE-588)4151167-0 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Laplace-Differentialgleichung |0 (DE-588)4228351-6 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
689 | 1 | 0 | |a Eigenfunktion |0 (DE-588)4151167-0 |D s |
689 | 1 | |8 2\p |5 DE-604 | |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |z 978-0-691-16075-7 |
830 | 0 | |a Annals of Mathematics Studies |v number 188 |w (DE-604)BV040389493 |9 188 | |
856 | 4 | 0 | |u https://doi.org/10.1515/9781400850549?locatt=mode:legacy |x Verlag |z URL des Erstveröffentlichers |3 Volltext |
856 | 4 | 0 | |u http://www.degruyter.com/search?f_0=isbnissn&q_0=9781400850549&searchTitles=true |x Verlag |3 Volltext |
912 | |a ZDB-23-DGG |a ZDB-23-PST | ||
940 | 1 | |q FKE_PDA_DGG | |
940 | 1 | |q FLA_PDA_DGG | |
940 | 1 | |q FHA_PDA_DGG | |
940 | 1 | |q UPA_PDA_DGG | |
940 | 1 | |q FAW_PDA_DGG | |
940 | 1 | |q FCO_PDA_DGG | |
999 | |a oai:aleph.bib-bvb.de:BVB01-027957512 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 2\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk |
Datensatz im Suchindex
_version_ | 1804153276737781760 |
---|---|
any_adam_object | |
author | Sogge, Christopher D. 1960- |
author_GND | (DE-588)104999275X |
author_facet | Sogge, Christopher D. 1960- |
author_role | aut |
author_sort | Sogge, Christopher D. 1960- |
author_variant | c d s cd cds |
building | Verbundindex |
bvnumber | BV042523173 |
classification_rvk | SI 830 |
collection | ZDB-23-DGG ZDB-23-PST |
ctrlnum | (OCoLC)869281847 (DE-599)BVBBV042523173 |
discipline | Mathematik |
doi_str_mv | 10.1515/9781400850549 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03597nmm a2200553 cb4500</leader><controlfield tag="001">BV042523173</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20200403 </controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">150423s2014 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781400850549</subfield><subfield code="9">978-1-4008-5054-9</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1515/9781400850549</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)869281847</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV042523173</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-859</subfield><subfield code="a">DE-860</subfield><subfield code="a">DE-Aug4</subfield><subfield code="a">DE-739</subfield><subfield code="a">DE-1046</subfield><subfield code="a">DE-83</subfield><subfield code="a">DE-1043</subfield><subfield code="a">DE-858</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SI 830</subfield><subfield code="0">(DE-625)143195:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Sogge, Christopher D.</subfield><subfield code="d">1960-</subfield><subfield code="0">(DE-588)104999275X</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Hangzhou lectures on eigenfunctions of the Laplacian</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Princeton, N.J.</subfield><subfield code="b">Princeton University Press</subfield><subfield code="c">[2014]</subfield></datafield><datafield tag="264" ind1=" " ind2="4"><subfield code="c">© 2014</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (208 S.)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Annals of Mathematics Studies</subfield><subfield code="v">number 188</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Biographical note: SoggeChristopher D.: Christopher D. Sogge is the J. J. Sylvester Professor of Mathematics at Johns Hopkins University. He is the author of "Fourier Integrals in Classical Analysis" and "Lectures on Nonlinear Wave Equations"</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Main description: Based on lectures given at Zhejiang University in Hangzhou, China, and Johns Hopkins University, this book introduces eigenfunctions on Riemannian manifolds. Christopher Sogge gives a proof of the sharp Weyl formula for the distribution of eigenvalues of Laplace-Beltrami operators, as well as an improved version of the Weyl formula, the Duistermaat-Guillemin theorem under natural assumptions on the geodesic flow. Sogge shows that there is quantum ergodicity of eigenfunctions if the geodesic flow is ergodic.Sogge begins with a treatment of the Hadamard parametrix before proving the first main result, the sharp Weyl formula. He avoids the use of Tauberian estimates and instead relies on sup-norm estimates for eigenfunctions. The author also gives a rapid introduction to the stationary phase and the basics of the theory of pseudodifferential operators and microlocal analysis. These are used to prove the Duistermaat-Guillemin theorem. Turning to the related topic of quantum ergodicity, Sogge demonstrates that if the long-term geodesic flow is uniformly distributed, most eigenfunctions exhibit a similar behavior, in the sense that their mass becomes equidistributed as their frequencies go to infinity</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Laplace-Differentialgleichung</subfield><subfield code="0">(DE-588)4228351-6</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Eigenfunktion</subfield><subfield code="0">(DE-588)4151167-0</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Laplace-Differentialgleichung</subfield><subfield code="0">(DE-588)4228351-6</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Eigenfunktion</subfield><subfield code="0">(DE-588)4151167-0</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">978-0-691-16075-7</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">Annals of Mathematics Studies</subfield><subfield code="v">number 188</subfield><subfield code="w">(DE-604)BV040389493</subfield><subfield code="9">188</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1515/9781400850549?locatt=mode:legacy</subfield><subfield code="x">Verlag</subfield><subfield code="z">URL des Erstveröffentlichers</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">http://www.degruyter.com/search?f_0=isbnissn&q_0=9781400850549&searchTitles=true</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-23-DGG</subfield><subfield code="a">ZDB-23-PST</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">FKE_PDA_DGG</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">FLA_PDA_DGG</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">FHA_PDA_DGG</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">UPA_PDA_DGG</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">FAW_PDA_DGG</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">FCO_PDA_DGG</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-027957512</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield></record></collection> |
id | DE-604.BV042523173 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T01:24:02Z |
institution | BVB |
isbn | 9781400850549 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-027957512 |
oclc_num | 869281847 |
open_access_boolean | |
owner | DE-859 DE-860 DE-Aug4 DE-739 DE-1046 DE-83 DE-1043 DE-858 |
owner_facet | DE-859 DE-860 DE-Aug4 DE-739 DE-1046 DE-83 DE-1043 DE-858 |
physical | 1 Online-Ressource (208 S.) |
psigel | ZDB-23-DGG ZDB-23-PST FKE_PDA_DGG FLA_PDA_DGG FHA_PDA_DGG UPA_PDA_DGG FAW_PDA_DGG FCO_PDA_DGG |
publishDate | 2014 |
publishDateSearch | 2014 |
publishDateSort | 2014 |
publisher | Princeton University Press |
record_format | marc |
series | Annals of Mathematics Studies |
series2 | Annals of Mathematics Studies |
spelling | Sogge, Christopher D. 1960- (DE-588)104999275X aut Hangzhou lectures on eigenfunctions of the Laplacian Princeton, N.J. Princeton University Press [2014] © 2014 1 Online-Ressource (208 S.) txt rdacontent c rdamedia cr rdacarrier Annals of Mathematics Studies number 188 Biographical note: SoggeChristopher D.: Christopher D. Sogge is the J. J. Sylvester Professor of Mathematics at Johns Hopkins University. He is the author of "Fourier Integrals in Classical Analysis" and "Lectures on Nonlinear Wave Equations" Main description: Based on lectures given at Zhejiang University in Hangzhou, China, and Johns Hopkins University, this book introduces eigenfunctions on Riemannian manifolds. Christopher Sogge gives a proof of the sharp Weyl formula for the distribution of eigenvalues of Laplace-Beltrami operators, as well as an improved version of the Weyl formula, the Duistermaat-Guillemin theorem under natural assumptions on the geodesic flow. Sogge shows that there is quantum ergodicity of eigenfunctions if the geodesic flow is ergodic.Sogge begins with a treatment of the Hadamard parametrix before proving the first main result, the sharp Weyl formula. He avoids the use of Tauberian estimates and instead relies on sup-norm estimates for eigenfunctions. The author also gives a rapid introduction to the stationary phase and the basics of the theory of pseudodifferential operators and microlocal analysis. These are used to prove the Duistermaat-Guillemin theorem. Turning to the related topic of quantum ergodicity, Sogge demonstrates that if the long-term geodesic flow is uniformly distributed, most eigenfunctions exhibit a similar behavior, in the sense that their mass becomes equidistributed as their frequencies go to infinity Laplace-Differentialgleichung (DE-588)4228351-6 gnd rswk-swf Eigenfunktion (DE-588)4151167-0 gnd rswk-swf Laplace-Differentialgleichung (DE-588)4228351-6 s 1\p DE-604 Eigenfunktion (DE-588)4151167-0 s 2\p DE-604 Erscheint auch als Druck-Ausgabe 978-0-691-16075-7 Annals of Mathematics Studies number 188 (DE-604)BV040389493 188 https://doi.org/10.1515/9781400850549?locatt=mode:legacy Verlag URL des Erstveröffentlichers Volltext http://www.degruyter.com/search?f_0=isbnissn&q_0=9781400850549&searchTitles=true Verlag Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 2\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Sogge, Christopher D. 1960- Hangzhou lectures on eigenfunctions of the Laplacian Annals of Mathematics Studies Laplace-Differentialgleichung (DE-588)4228351-6 gnd Eigenfunktion (DE-588)4151167-0 gnd |
subject_GND | (DE-588)4228351-6 (DE-588)4151167-0 |
title | Hangzhou lectures on eigenfunctions of the Laplacian |
title_auth | Hangzhou lectures on eigenfunctions of the Laplacian |
title_exact_search | Hangzhou lectures on eigenfunctions of the Laplacian |
title_full | Hangzhou lectures on eigenfunctions of the Laplacian |
title_fullStr | Hangzhou lectures on eigenfunctions of the Laplacian |
title_full_unstemmed | Hangzhou lectures on eigenfunctions of the Laplacian |
title_short | Hangzhou lectures on eigenfunctions of the Laplacian |
title_sort | hangzhou lectures on eigenfunctions of the laplacian |
topic | Laplace-Differentialgleichung (DE-588)4228351-6 gnd Eigenfunktion (DE-588)4151167-0 gnd |
topic_facet | Laplace-Differentialgleichung Eigenfunktion |
url | https://doi.org/10.1515/9781400850549?locatt=mode:legacy http://www.degruyter.com/search?f_0=isbnissn&q_0=9781400850549&searchTitles=true |
volume_link | (DE-604)BV040389493 |
work_keys_str_mv | AT soggechristopherd hangzhoulecturesoneigenfunctionsofthelaplacian |