Chow rings, decomposition of the diagonal, and the topology of families:
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Princeton, N.J.
Princeton University Press
[2014]
|
Schriftenreihe: | Annals of Mathematics Studies
number 187 |
Schlagworte: | |
Online-Zugang: | URL des Erstveröffentlichers |
Beschreibung: | In this book, Claire Voisin provides an introduction to algebraic cycles on complex algebraic varieties, to the major conjectures relating them to cohomology, and even more precisely to Hodge structures on cohomology. The volume is intended for both students and researchers, and not only presents a survey of the geometric methods developed in the last thirty years to understand the famous Bloch-Beilinson conjectures, but also examines recent work by Voisin. The book focuses on two central objects: the diagonal of a variety—and the partial Bloch-Srinivas type decompositions it may have depending on the size of Chow groups—as well as its small diagonal, which is the right object to consider in order to understand the ring structure on Chow groups and cohomology. An exploration of a sampling of recent works by Voisin looks at the relation, conjectured in general by Bloch and Beilinson, between the coniveau of general complete intersections and their Chow groups and a very particular property satisfied by the Chow ring of K3 surfaces and conjecturally by hyper-Kähler manifolds. In particular, the book delves into arguments originating in Nori's work that have been further developed by others |
Beschreibung: | 1 Online-Ressource (176p.) |
ISBN: | 9781400850532 |
DOI: | 10.1515/9781400850532 |
Internformat
MARC
LEADER | 00000nmm a2200000 cb4500 | ||
---|---|---|---|
001 | BV042523172 | ||
003 | DE-604 | ||
005 | 20200403 | ||
007 | cr|uuu---uuuuu | ||
008 | 150423s2014 |||| o||u| ||||||eng d | ||
020 | |a 9781400850532 |9 978-1-4008-5053-2 | ||
024 | 7 | |a 10.1515/9781400850532 |2 doi | |
035 | |a (OCoLC)864551391 | ||
035 | |a (DE-599)BVBBV042523172 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-859 |a DE-860 |a DE-Aug4 |a DE-739 |a DE-1046 |a DE-83 |a DE-1043 |a DE-858 | ||
082 | 0 | |a 516.3/5 |2 23 | |
084 | |a SI 830 |0 (DE-625)143195: |2 rvk | ||
084 | |a SK 260 |0 (DE-625)143227: |2 rvk | ||
100 | 1 | |a Voisin, Claire |d 1962- |0 (DE-588)1075027810 |4 aut | |
245 | 1 | 0 | |a Chow rings, decomposition of the diagonal, and the topology of families |c Claire Voisin |
264 | 1 | |a Princeton, N.J. |b Princeton University Press |c [2014] | |
264 | 4 | |c © 2014 | |
300 | |a 1 Online-Ressource (176p.) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 1 | |a Annals of Mathematics Studies |v number 187 | |
500 | |a In this book, Claire Voisin provides an introduction to algebraic cycles on complex algebraic varieties, to the major conjectures relating them to cohomology, and even more precisely to Hodge structures on cohomology. The volume is intended for both students and researchers, and not only presents a survey of the geometric methods developed in the last thirty years to understand the famous Bloch-Beilinson conjectures, but also examines recent work by Voisin. The book focuses on two central objects: the diagonal of a variety—and the partial Bloch-Srinivas type decompositions it may have depending on the size of Chow groups—as well as its small diagonal, which is the right object to consider in order to understand the ring structure on Chow groups and cohomology. An exploration of a sampling of recent works by Voisin looks at the relation, conjectured in general by Bloch and Beilinson, between the coniveau of general complete intersections and their Chow groups and a very particular property satisfied by the Chow ring of K3 surfaces and conjecturally by hyper-Kähler manifolds. In particular, the book delves into arguments originating in Nori's work that have been further developed by others | ||
546 | |a In English | ||
650 | 4 | |a Mathematik | |
650 | 4 | |a Algebraic varieties | |
650 | 4 | |a Decomposition (Mathematics) | |
650 | 4 | |a Homology theory | |
650 | 7 | |a MATHEMATICS / Geometry / General |2 bisacsh | |
650 | 7 | |a MATHEMATICS / Group Theory |2 bisacsh | |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |z 978-0-691-16050-4 |
830 | 0 | |a Annals of Mathematics Studies |v number 187 |w (DE-604)BV040389493 |9 187 | |
856 | 4 | 0 | |u https://doi.org/10.1515/9781400850532?locatt=mode:legacy |x Verlag |z URL des Erstveröffentlichers |3 Volltext |
912 | |a ZDB-23-DGG |a ZDB-23-PST | ||
940 | 1 | |q FKE_PDA_DGG | |
940 | 1 | |q FLA_PDA_DGG | |
940 | 1 | |q FHA_PDA_DGG | |
940 | 1 | |q UPA_PDA_DGG | |
940 | 1 | |q FAW_PDA_DGG | |
940 | 1 | |q FCO_PDA_DGG | |
999 | |a oai:aleph.bib-bvb.de:BVB01-027957511 |
Datensatz im Suchindex
_version_ | 1804153276730441728 |
---|---|
any_adam_object | |
author | Voisin, Claire 1962- |
author_GND | (DE-588)1075027810 |
author_facet | Voisin, Claire 1962- |
author_role | aut |
author_sort | Voisin, Claire 1962- |
author_variant | c v cv |
building | Verbundindex |
bvnumber | BV042523172 |
classification_rvk | SI 830 SK 260 |
collection | ZDB-23-DGG ZDB-23-PST |
ctrlnum | (OCoLC)864551391 (DE-599)BVBBV042523172 |
dewey-full | 516.3/5 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 516 - Geometry |
dewey-raw | 516.3/5 |
dewey-search | 516.3/5 |
dewey-sort | 3516.3 15 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
doi_str_mv | 10.1515/9781400850532 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03085nmm a2200541 cb4500</leader><controlfield tag="001">BV042523172</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20200403 </controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">150423s2014 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781400850532</subfield><subfield code="9">978-1-4008-5053-2</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1515/9781400850532</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)864551391</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV042523172</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-859</subfield><subfield code="a">DE-860</subfield><subfield code="a">DE-Aug4</subfield><subfield code="a">DE-739</subfield><subfield code="a">DE-1046</subfield><subfield code="a">DE-83</subfield><subfield code="a">DE-1043</subfield><subfield code="a">DE-858</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">516.3/5</subfield><subfield code="2">23</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SI 830</subfield><subfield code="0">(DE-625)143195:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 260</subfield><subfield code="0">(DE-625)143227:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Voisin, Claire</subfield><subfield code="d">1962-</subfield><subfield code="0">(DE-588)1075027810</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Chow rings, decomposition of the diagonal, and the topology of families</subfield><subfield code="c">Claire Voisin</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Princeton, N.J.</subfield><subfield code="b">Princeton University Press</subfield><subfield code="c">[2014]</subfield></datafield><datafield tag="264" ind1=" " ind2="4"><subfield code="c">© 2014</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (176p.)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Annals of Mathematics Studies</subfield><subfield code="v">number 187</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">In this book, Claire Voisin provides an introduction to algebraic cycles on complex algebraic varieties, to the major conjectures relating them to cohomology, and even more precisely to Hodge structures on cohomology. The volume is intended for both students and researchers, and not only presents a survey of the geometric methods developed in the last thirty years to understand the famous Bloch-Beilinson conjectures, but also examines recent work by Voisin. The book focuses on two central objects: the diagonal of a variety—and the partial Bloch-Srinivas type decompositions it may have depending on the size of Chow groups—as well as its small diagonal, which is the right object to consider in order to understand the ring structure on Chow groups and cohomology. An exploration of a sampling of recent works by Voisin looks at the relation, conjectured in general by Bloch and Beilinson, between the coniveau of general complete intersections and their Chow groups and a very particular property satisfied by the Chow ring of K3 surfaces and conjecturally by hyper-Kähler manifolds. In particular, the book delves into arguments originating in Nori's work that have been further developed by others</subfield></datafield><datafield tag="546" ind1=" " ind2=" "><subfield code="a">In English</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematik</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Algebraic varieties</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Decomposition (Mathematics)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Homology theory</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">MATHEMATICS / Geometry / General</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">MATHEMATICS / Group Theory</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">978-0-691-16050-4</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">Annals of Mathematics Studies</subfield><subfield code="v">number 187</subfield><subfield code="w">(DE-604)BV040389493</subfield><subfield code="9">187</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1515/9781400850532?locatt=mode:legacy</subfield><subfield code="x">Verlag</subfield><subfield code="z">URL des Erstveröffentlichers</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-23-DGG</subfield><subfield code="a">ZDB-23-PST</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">FKE_PDA_DGG</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">FLA_PDA_DGG</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">FHA_PDA_DGG</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">UPA_PDA_DGG</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">FAW_PDA_DGG</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">FCO_PDA_DGG</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-027957511</subfield></datafield></record></collection> |
id | DE-604.BV042523172 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T01:24:02Z |
institution | BVB |
isbn | 9781400850532 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-027957511 |
oclc_num | 864551391 |
open_access_boolean | |
owner | DE-859 DE-860 DE-Aug4 DE-739 DE-1046 DE-83 DE-1043 DE-858 |
owner_facet | DE-859 DE-860 DE-Aug4 DE-739 DE-1046 DE-83 DE-1043 DE-858 |
physical | 1 Online-Ressource (176p.) |
psigel | ZDB-23-DGG ZDB-23-PST FKE_PDA_DGG FLA_PDA_DGG FHA_PDA_DGG UPA_PDA_DGG FAW_PDA_DGG FCO_PDA_DGG |
publishDate | 2014 |
publishDateSearch | 2014 |
publishDateSort | 2014 |
publisher | Princeton University Press |
record_format | marc |
series | Annals of Mathematics Studies |
series2 | Annals of Mathematics Studies |
spelling | Voisin, Claire 1962- (DE-588)1075027810 aut Chow rings, decomposition of the diagonal, and the topology of families Claire Voisin Princeton, N.J. Princeton University Press [2014] © 2014 1 Online-Ressource (176p.) txt rdacontent c rdamedia cr rdacarrier Annals of Mathematics Studies number 187 In this book, Claire Voisin provides an introduction to algebraic cycles on complex algebraic varieties, to the major conjectures relating them to cohomology, and even more precisely to Hodge structures on cohomology. The volume is intended for both students and researchers, and not only presents a survey of the geometric methods developed in the last thirty years to understand the famous Bloch-Beilinson conjectures, but also examines recent work by Voisin. The book focuses on two central objects: the diagonal of a variety—and the partial Bloch-Srinivas type decompositions it may have depending on the size of Chow groups—as well as its small diagonal, which is the right object to consider in order to understand the ring structure on Chow groups and cohomology. An exploration of a sampling of recent works by Voisin looks at the relation, conjectured in general by Bloch and Beilinson, between the coniveau of general complete intersections and their Chow groups and a very particular property satisfied by the Chow ring of K3 surfaces and conjecturally by hyper-Kähler manifolds. In particular, the book delves into arguments originating in Nori's work that have been further developed by others In English Mathematik Algebraic varieties Decomposition (Mathematics) Homology theory MATHEMATICS / Geometry / General bisacsh MATHEMATICS / Group Theory bisacsh Erscheint auch als Druck-Ausgabe 978-0-691-16050-4 Annals of Mathematics Studies number 187 (DE-604)BV040389493 187 https://doi.org/10.1515/9781400850532?locatt=mode:legacy Verlag URL des Erstveröffentlichers Volltext |
spellingShingle | Voisin, Claire 1962- Chow rings, decomposition of the diagonal, and the topology of families Annals of Mathematics Studies Mathematik Algebraic varieties Decomposition (Mathematics) Homology theory MATHEMATICS / Geometry / General bisacsh MATHEMATICS / Group Theory bisacsh |
title | Chow rings, decomposition of the diagonal, and the topology of families |
title_auth | Chow rings, decomposition of the diagonal, and the topology of families |
title_exact_search | Chow rings, decomposition of the diagonal, and the topology of families |
title_full | Chow rings, decomposition of the diagonal, and the topology of families Claire Voisin |
title_fullStr | Chow rings, decomposition of the diagonal, and the topology of families Claire Voisin |
title_full_unstemmed | Chow rings, decomposition of the diagonal, and the topology of families Claire Voisin |
title_short | Chow rings, decomposition of the diagonal, and the topology of families |
title_sort | chow rings decomposition of the diagonal and the topology of families |
topic | Mathematik Algebraic varieties Decomposition (Mathematics) Homology theory MATHEMATICS / Geometry / General bisacsh MATHEMATICS / Group Theory bisacsh |
topic_facet | Mathematik Algebraic varieties Decomposition (Mathematics) Homology theory MATHEMATICS / Geometry / General MATHEMATICS / Group Theory |
url | https://doi.org/10.1515/9781400850532?locatt=mode:legacy |
volume_link | (DE-604)BV040389493 |
work_keys_str_mv | AT voisinclaire chowringsdecompositionofthediagonalandthetopologyoffamilies |