Hidden Markov Processes: Theory and Applications to Biology
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Princeton, N.J.
Princeton University Press
[2014]
|
Schriftenreihe: | Princeton Series in Applied Mathematics
|
Schlagworte: | |
Online-Zugang: | FAB01 FAW01 FCO01 FHA01 FKE01 FLA01 UPA01 Volltext |
Beschreibung: | This book explores important aspects of Markov and hidden Markov processes and the applications of these ideas to various problems in computational biology. The book starts from first principles, so that no previous knowledge of probability is necessary. However, the work is rigorous and mathematical, making it useful to engineers and mathematicians, even those not interested in biological applications. A range of exercises is provided, including drills to familiarize the reader with concepts and more advanced problems that require deep thinking about the theory. Biological applications are taken from post-genomic biology, especially genomics and proteomics. The topics examined include standard material such as the Perron-Frobenius theorem, transient and recurrent states, hitting probabilities and hitting times, maximum likelihood estimation, the Viterbi algorithm, and the Baum-Welch algorithm. The book contains discussions of extremely useful topics not usually seen at the basic level, such as ergodicity of Markov processes, Markov Chain Monte Carlo (MCMC), information theory, and large deviation theory for both i.i.d and Markov processes. The book also presents state-of-the-art realization theory for hidden Markov models. Among biological applications, it offers an in-depth look at the BLAST (Basic Local Alignment Search Technique) algorithm, including a comprehensive explanation of the underlying theory. Other applications such as profile hidden Markov models are also explored |
Beschreibung: | 1 Online-Ressource (312p.) |
ISBN: | 9781400850518 |
DOI: | 10.1515/9781400850518 |
Internformat
MARC
LEADER | 00000nmm a2200000zc 4500 | ||
---|---|---|---|
001 | BV042523170 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 150423s2014 |||| o||u| ||||||eng d | ||
020 | |a 9781400850518 |9 978-1-4008-5051-8 | ||
024 | 7 | |a 10.1515/9781400850518 |2 doi | |
035 | |a (OCoLC)888550795 | ||
035 | |a (DE-599)BVBBV042523170 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-859 |a DE-860 |a DE-Aug4 |a DE-739 |a DE-1046 |a DE-1043 |a DE-858 | ||
082 | 0 | |a 519.33 |2 23 | |
100 | 1 | |a Vidyasagar, M. |e Verfasser |4 aut | |
245 | 1 | 0 | |a Hidden Markov Processes |b Theory and Applications to Biology |c M. Vidyasagar |
264 | 1 | |a Princeton, N.J. |b Princeton University Press |c [2014] | |
300 | |a 1 Online-Ressource (312p.) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a Princeton Series in Applied Mathematics | |
500 | |a This book explores important aspects of Markov and hidden Markov processes and the applications of these ideas to various problems in computational biology. The book starts from first principles, so that no previous knowledge of probability is necessary. However, the work is rigorous and mathematical, making it useful to engineers and mathematicians, even those not interested in biological applications. A range of exercises is provided, including drills to familiarize the reader with concepts and more advanced problems that require deep thinking about the theory. Biological applications are taken from post-genomic biology, especially genomics and proteomics. The topics examined include standard material such as the Perron-Frobenius theorem, transient and recurrent states, hitting probabilities and hitting times, maximum likelihood estimation, the Viterbi algorithm, and the Baum-Welch algorithm. The book contains discussions of extremely useful topics not usually seen at the basic level, such as ergodicity of Markov processes, Markov Chain Monte Carlo (MCMC), information theory, and large deviation theory for both i.i.d and Markov processes. The book also presents state-of-the-art realization theory for hidden Markov models. Among biological applications, it offers an in-depth look at the BLAST (Basic Local Alignment Search Technique) algorithm, including a comprehensive explanation of the underlying theory. Other applications such as profile hidden Markov models are also explored | ||
546 | |a In English | ||
650 | 4 | |a Mathematik | |
650 | 4 | |a Computational biology | |
650 | 4 | |a Markov processes | |
650 | 4 | |a Biology | |
650 | 4 | |a Stochastic processes | |
650 | 0 | 7 | |a Markov-Prozess |0 (DE-588)4134948-9 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Hidden-Markov-Modell |0 (DE-588)4352479-5 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Markov-Prozess |0 (DE-588)4134948-9 |D s |
689 | 0 | 1 | |a Hidden-Markov-Modell |0 (DE-588)4352479-5 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
856 | 4 | 0 | |u https://doi.org/10.1515/9781400850518 |x Verlag |3 Volltext |
912 | |a ZDB-23-DGG | ||
999 | |a oai:aleph.bib-bvb.de:BVB01-027957509 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
966 | e | |u https://doi.org/10.1515/9781400850518?locatt=mode:legacy |l FAB01 |p ZDB-23-DGG |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1515/9781400850518?locatt=mode:legacy |l FAW01 |p ZDB-23-DGG |q FAW_PDA_DGG |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1515/9781400850518?locatt=mode:legacy |l FCO01 |p ZDB-23-DGG |q FCO_PDA_DGG |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1515/9781400850518?locatt=mode:legacy |l FHA01 |p ZDB-23-DGG |q FHA_PDA_DGG |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1515/9781400850518?locatt=mode:legacy |l FKE01 |p ZDB-23-DGG |q FKE_PDA_DGG |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1515/9781400850518?locatt=mode:legacy |l FLA01 |p ZDB-23-DGG |q FLA_PDA_DGG |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1515/9781400850518?locatt=mode:legacy |l UPA01 |p ZDB-23-DGG |q UPA_PDA_DGG |x Verlag |3 Volltext |
Datensatz im Suchindex
_version_ | 1804153276724150272 |
---|---|
any_adam_object | |
author | Vidyasagar, M. |
author_facet | Vidyasagar, M. |
author_role | aut |
author_sort | Vidyasagar, M. |
author_variant | m v mv |
building | Verbundindex |
bvnumber | BV042523170 |
collection | ZDB-23-DGG |
ctrlnum | (OCoLC)888550795 (DE-599)BVBBV042523170 |
dewey-full | 519.33 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 519 - Probabilities and applied mathematics |
dewey-raw | 519.33 |
dewey-search | 519.33 |
dewey-sort | 3519.33 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
doi_str_mv | 10.1515/9781400850518 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03962nmm a2200553zc 4500</leader><controlfield tag="001">BV042523170</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">150423s2014 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781400850518</subfield><subfield code="9">978-1-4008-5051-8</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1515/9781400850518</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)888550795</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV042523170</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-859</subfield><subfield code="a">DE-860</subfield><subfield code="a">DE-Aug4</subfield><subfield code="a">DE-739</subfield><subfield code="a">DE-1046</subfield><subfield code="a">DE-1043</subfield><subfield code="a">DE-858</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">519.33</subfield><subfield code="2">23</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Vidyasagar, M.</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Hidden Markov Processes</subfield><subfield code="b">Theory and Applications to Biology</subfield><subfield code="c">M. Vidyasagar</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Princeton, N.J.</subfield><subfield code="b">Princeton University Press</subfield><subfield code="c">[2014]</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (312p.)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Princeton Series in Applied Mathematics</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">This book explores important aspects of Markov and hidden Markov processes and the applications of these ideas to various problems in computational biology. The book starts from first principles, so that no previous knowledge of probability is necessary. However, the work is rigorous and mathematical, making it useful to engineers and mathematicians, even those not interested in biological applications. A range of exercises is provided, including drills to familiarize the reader with concepts and more advanced problems that require deep thinking about the theory. Biological applications are taken from post-genomic biology, especially genomics and proteomics. The topics examined include standard material such as the Perron-Frobenius theorem, transient and recurrent states, hitting probabilities and hitting times, maximum likelihood estimation, the Viterbi algorithm, and the Baum-Welch algorithm. The book contains discussions of extremely useful topics not usually seen at the basic level, such as ergodicity of Markov processes, Markov Chain Monte Carlo (MCMC), information theory, and large deviation theory for both i.i.d and Markov processes. The book also presents state-of-the-art realization theory for hidden Markov models. Among biological applications, it offers an in-depth look at the BLAST (Basic Local Alignment Search Technique) algorithm, including a comprehensive explanation of the underlying theory. Other applications such as profile hidden Markov models are also explored</subfield></datafield><datafield tag="546" ind1=" " ind2=" "><subfield code="a">In English</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematik</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Computational biology</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Markov processes</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Biology</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Stochastic processes</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Markov-Prozess</subfield><subfield code="0">(DE-588)4134948-9</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Hidden-Markov-Modell</subfield><subfield code="0">(DE-588)4352479-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Markov-Prozess</subfield><subfield code="0">(DE-588)4134948-9</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Hidden-Markov-Modell</subfield><subfield code="0">(DE-588)4352479-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1515/9781400850518</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-23-DGG</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-027957509</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1515/9781400850518?locatt=mode:legacy</subfield><subfield code="l">FAB01</subfield><subfield code="p">ZDB-23-DGG</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1515/9781400850518?locatt=mode:legacy</subfield><subfield code="l">FAW01</subfield><subfield code="p">ZDB-23-DGG</subfield><subfield code="q">FAW_PDA_DGG</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1515/9781400850518?locatt=mode:legacy</subfield><subfield code="l">FCO01</subfield><subfield code="p">ZDB-23-DGG</subfield><subfield code="q">FCO_PDA_DGG</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1515/9781400850518?locatt=mode:legacy</subfield><subfield code="l">FHA01</subfield><subfield code="p">ZDB-23-DGG</subfield><subfield code="q">FHA_PDA_DGG</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1515/9781400850518?locatt=mode:legacy</subfield><subfield code="l">FKE01</subfield><subfield code="p">ZDB-23-DGG</subfield><subfield code="q">FKE_PDA_DGG</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1515/9781400850518?locatt=mode:legacy</subfield><subfield code="l">FLA01</subfield><subfield code="p">ZDB-23-DGG</subfield><subfield code="q">FLA_PDA_DGG</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1515/9781400850518?locatt=mode:legacy</subfield><subfield code="l">UPA01</subfield><subfield code="p">ZDB-23-DGG</subfield><subfield code="q">UPA_PDA_DGG</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV042523170 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T01:24:02Z |
institution | BVB |
isbn | 9781400850518 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-027957509 |
oclc_num | 888550795 |
open_access_boolean | |
owner | DE-859 DE-860 DE-Aug4 DE-739 DE-1046 DE-1043 DE-858 |
owner_facet | DE-859 DE-860 DE-Aug4 DE-739 DE-1046 DE-1043 DE-858 |
physical | 1 Online-Ressource (312p.) |
psigel | ZDB-23-DGG ZDB-23-DGG FAW_PDA_DGG ZDB-23-DGG FCO_PDA_DGG ZDB-23-DGG FHA_PDA_DGG ZDB-23-DGG FKE_PDA_DGG ZDB-23-DGG FLA_PDA_DGG ZDB-23-DGG UPA_PDA_DGG |
publishDate | 2014 |
publishDateSearch | 2014 |
publishDateSort | 2014 |
publisher | Princeton University Press |
record_format | marc |
series2 | Princeton Series in Applied Mathematics |
spelling | Vidyasagar, M. Verfasser aut Hidden Markov Processes Theory and Applications to Biology M. Vidyasagar Princeton, N.J. Princeton University Press [2014] 1 Online-Ressource (312p.) txt rdacontent c rdamedia cr rdacarrier Princeton Series in Applied Mathematics This book explores important aspects of Markov and hidden Markov processes and the applications of these ideas to various problems in computational biology. The book starts from first principles, so that no previous knowledge of probability is necessary. However, the work is rigorous and mathematical, making it useful to engineers and mathematicians, even those not interested in biological applications. A range of exercises is provided, including drills to familiarize the reader with concepts and more advanced problems that require deep thinking about the theory. Biological applications are taken from post-genomic biology, especially genomics and proteomics. The topics examined include standard material such as the Perron-Frobenius theorem, transient and recurrent states, hitting probabilities and hitting times, maximum likelihood estimation, the Viterbi algorithm, and the Baum-Welch algorithm. The book contains discussions of extremely useful topics not usually seen at the basic level, such as ergodicity of Markov processes, Markov Chain Monte Carlo (MCMC), information theory, and large deviation theory for both i.i.d and Markov processes. The book also presents state-of-the-art realization theory for hidden Markov models. Among biological applications, it offers an in-depth look at the BLAST (Basic Local Alignment Search Technique) algorithm, including a comprehensive explanation of the underlying theory. Other applications such as profile hidden Markov models are also explored In English Mathematik Computational biology Markov processes Biology Stochastic processes Markov-Prozess (DE-588)4134948-9 gnd rswk-swf Hidden-Markov-Modell (DE-588)4352479-5 gnd rswk-swf Markov-Prozess (DE-588)4134948-9 s Hidden-Markov-Modell (DE-588)4352479-5 s 1\p DE-604 https://doi.org/10.1515/9781400850518 Verlag Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Vidyasagar, M. Hidden Markov Processes Theory and Applications to Biology Mathematik Computational biology Markov processes Biology Stochastic processes Markov-Prozess (DE-588)4134948-9 gnd Hidden-Markov-Modell (DE-588)4352479-5 gnd |
subject_GND | (DE-588)4134948-9 (DE-588)4352479-5 |
title | Hidden Markov Processes Theory and Applications to Biology |
title_auth | Hidden Markov Processes Theory and Applications to Biology |
title_exact_search | Hidden Markov Processes Theory and Applications to Biology |
title_full | Hidden Markov Processes Theory and Applications to Biology M. Vidyasagar |
title_fullStr | Hidden Markov Processes Theory and Applications to Biology M. Vidyasagar |
title_full_unstemmed | Hidden Markov Processes Theory and Applications to Biology M. Vidyasagar |
title_short | Hidden Markov Processes |
title_sort | hidden markov processes theory and applications to biology |
title_sub | Theory and Applications to Biology |
topic | Mathematik Computational biology Markov processes Biology Stochastic processes Markov-Prozess (DE-588)4134948-9 gnd Hidden-Markov-Modell (DE-588)4352479-5 gnd |
topic_facet | Mathematik Computational biology Markov processes Biology Stochastic processes Markov-Prozess Hidden-Markov-Modell |
url | https://doi.org/10.1515/9781400850518 |
work_keys_str_mv | AT vidyasagarm hiddenmarkovprocessestheoryandapplicationstobiology |