Mumford-Tate groups and domains: their geometry and arithmetic
Gespeichert in:
Hauptverfasser: | , , |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Princeton, N.J.
Princeton University Press
[2012]
|
Schriftenreihe: | Annals of Mathematics Studies
number 183 |
Schlagworte: | |
Online-Zugang: | Volltext Volltext |
Beschreibung: | Biographical note: Mark Green is professor of mathematics at the University of California, Los Angeles and is Director Emeritus of the Institute for Pure and Applied Mathematics. Phillip A. Griffiths is Professor Emeritus of Mathematics and former director at the Institute for Advanced Study in Princeton. Matt Kerr is assistant professor of mathematics at Washington University in St. Louis Main description: Mumford-Tate groups are the fundamental symmetry groups of Hodge theory, a subject which rests at the center of contemporary complex algebraic geometry. This book is the first comprehensive exploration of Mumford-Tate groups and domains. Containing basic theory and a wealth of new views and results, it will become an essential resource for graduate students and researchers. Although Mumford-Tate groups can be defined for general structures, their theory and use to date has mainly been in the classical case of abelian varieties. While the book does examine this area, it focuses on the nonclassical case. The general theory turns out to be very rich, such as in the unexpected connections of finite dimensional and infinite dimensional representation theory of real, semisimple Lie groups. The authors give the complete classification of Hodge representations, a topic that should become a standard in the finite-dimensional representation theory of noncompact, real, semisimple Lie groups. They also indicate that in the future, a connection seems ready to be made between Lie groups that admit discrete series representations and the study of automorphic cohomology on quotients of Mumford-Tate domains by arithmetic groups. Bringing together complex geometry, representation theory, and arithmetic, this book opens up a fresh perspective on an important subject |
Beschreibung: | 1 Online-Ressource (288 S.) |
ISBN: | 9781400842735 |
Internformat
MARC
LEADER | 00000nmm a2200000 cb4500 | ||
---|---|---|---|
001 | BV042523029 | ||
003 | DE-604 | ||
005 | 20200403 | ||
007 | cr|uuu---uuuuu | ||
008 | 150423s2012 |||| o||u| ||||||eng d | ||
020 | |a 9781400842735 |9 978-1-4008-4273-5 | ||
024 | 7 | |a 10.1515/9781400842735 |2 doi | |
035 | |a (OCoLC)909811352 | ||
035 | |a (DE-599)BVBBV042523029 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-859 |a DE-860 |a DE-Aug4 |a DE-739 |a DE-1046 |a DE-83 |a DE-1043 |a DE-858 | ||
084 | |a SI 830 |0 (DE-625)143195: |2 rvk | ||
084 | |a SK 240 |0 (DE-625)143226: |2 rvk | ||
100 | 1 | |a Green, Mark |d 1947- |0 (DE-588)129505234 |4 aut | |
245 | 1 | 0 | |a Mumford-Tate groups and domains |b their geometry and arithmetic |
264 | 1 | |a Princeton, N.J. |b Princeton University Press |c [2012] | |
264 | 4 | |c © 2012 | |
300 | |a 1 Online-Ressource (288 S.) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 1 | |a Annals of Mathematics Studies |v number 183 | |
500 | |a Biographical note: Mark Green is professor of mathematics at the University of California, Los Angeles and is Director Emeritus of the Institute for Pure and Applied Mathematics. Phillip A. Griffiths is Professor Emeritus of Mathematics and former director at the Institute for Advanced Study in Princeton. Matt Kerr is assistant professor of mathematics at Washington University in St. Louis | ||
500 | |a Main description: Mumford-Tate groups are the fundamental symmetry groups of Hodge theory, a subject which rests at the center of contemporary complex algebraic geometry. This book is the first comprehensive exploration of Mumford-Tate groups and domains. Containing basic theory and a wealth of new views and results, it will become an essential resource for graduate students and researchers. Although Mumford-Tate groups can be defined for general structures, their theory and use to date has mainly been in the classical case of abelian varieties. While the book does examine this area, it focuses on the nonclassical case. The general theory turns out to be very rich, such as in the unexpected connections of finite dimensional and infinite dimensional representation theory of real, semisimple Lie groups. The authors give the complete classification of Hodge representations, a topic that should become a standard in the finite-dimensional representation theory of noncompact, real, semisimple Lie groups. They also indicate that in the future, a connection seems ready to be made between Lie groups that admit discrete series representations and the study of automorphic cohomology on quotients of Mumford-Tate domains by arithmetic groups. Bringing together complex geometry, representation theory, and arithmetic, this book opens up a fresh perspective on an important subject | ||
650 | 0 | 7 | |a Mumford-Tate-Gruppe |0 (DE-588)4614885-1 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Mumford-Tate-Gruppe |0 (DE-588)4614885-1 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
700 | 1 | |a Griffiths, Phillip |d 1938- |0 (DE-588)131881434 |4 aut | |
700 | 1 | |a Kerr, Matt |d 1975- |0 (DE-588)1022666991 |4 aut | |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |z 978-0-691-15424-4 |
830 | 0 | |a Annals of Mathematics Studies |v number 183 |w (DE-604)BV040389493 |9 183 | |
856 | 4 | 0 | |u http://www.degruyter.com/doi/book/10.1515/9781400842735?locatt=mode:legacy |x Verlag |z URL des Erstveröffentlichers |3 Volltext |
856 | 4 | 0 | |u http://www.degruyter.com/search?f_0=isbnissn&q_0=9781400842735&searchTitles=true |x Verlag |3 Volltext |
912 | |a ZDB-23-DGG |a ZDB-23-PST | ||
940 | 1 | |q FKE_PDA_DGG | |
940 | 1 | |q FLA_PDA_DGG | |
940 | 1 | |q FHA_PDA_DGG | |
940 | 1 | |q UPA_PDA_DGG | |
940 | 1 | |q FAW_PDA_DGG | |
940 | 1 | |q FCO_PDA_DGG | |
999 | |a oai:aleph.bib-bvb.de:BVB01-027957368 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk |
Datensatz im Suchindex
_version_ | 1804153276404334592 |
---|---|
any_adam_object | |
author | Green, Mark 1947- Griffiths, Phillip 1938- Kerr, Matt 1975- |
author_GND | (DE-588)129505234 (DE-588)131881434 (DE-588)1022666991 |
author_facet | Green, Mark 1947- Griffiths, Phillip 1938- Kerr, Matt 1975- |
author_role | aut aut aut |
author_sort | Green, Mark 1947- |
author_variant | m g mg p g pg m k mk |
building | Verbundindex |
bvnumber | BV042523029 |
classification_rvk | SI 830 SK 240 |
collection | ZDB-23-DGG ZDB-23-PST |
ctrlnum | (OCoLC)909811352 (DE-599)BVBBV042523029 |
discipline | Mathematik |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03839nmm a2200541 cb4500</leader><controlfield tag="001">BV042523029</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20200403 </controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">150423s2012 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781400842735</subfield><subfield code="9">978-1-4008-4273-5</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1515/9781400842735</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)909811352</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV042523029</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-859</subfield><subfield code="a">DE-860</subfield><subfield code="a">DE-Aug4</subfield><subfield code="a">DE-739</subfield><subfield code="a">DE-1046</subfield><subfield code="a">DE-83</subfield><subfield code="a">DE-1043</subfield><subfield code="a">DE-858</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SI 830</subfield><subfield code="0">(DE-625)143195:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 240</subfield><subfield code="0">(DE-625)143226:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Green, Mark</subfield><subfield code="d">1947-</subfield><subfield code="0">(DE-588)129505234</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Mumford-Tate groups and domains</subfield><subfield code="b">their geometry and arithmetic</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Princeton, N.J.</subfield><subfield code="b">Princeton University Press</subfield><subfield code="c">[2012]</subfield></datafield><datafield tag="264" ind1=" " ind2="4"><subfield code="c">© 2012</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (288 S.)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Annals of Mathematics Studies</subfield><subfield code="v">number 183</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Biographical note: Mark Green is professor of mathematics at the University of California, Los Angeles and is Director Emeritus of the Institute for Pure and Applied Mathematics. Phillip A. Griffiths is Professor Emeritus of Mathematics and former director at the Institute for Advanced Study in Princeton. Matt Kerr is assistant professor of mathematics at Washington University in St. Louis</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Main description: Mumford-Tate groups are the fundamental symmetry groups of Hodge theory, a subject which rests at the center of contemporary complex algebraic geometry. This book is the first comprehensive exploration of Mumford-Tate groups and domains. Containing basic theory and a wealth of new views and results, it will become an essential resource for graduate students and researchers. Although Mumford-Tate groups can be defined for general structures, their theory and use to date has mainly been in the classical case of abelian varieties. While the book does examine this area, it focuses on the nonclassical case. The general theory turns out to be very rich, such as in the unexpected connections of finite dimensional and infinite dimensional representation theory of real, semisimple Lie groups. The authors give the complete classification of Hodge representations, a topic that should become a standard in the finite-dimensional representation theory of noncompact, real, semisimple Lie groups. They also indicate that in the future, a connection seems ready to be made between Lie groups that admit discrete series representations and the study of automorphic cohomology on quotients of Mumford-Tate domains by arithmetic groups. Bringing together complex geometry, representation theory, and arithmetic, this book opens up a fresh perspective on an important subject</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Mumford-Tate-Gruppe</subfield><subfield code="0">(DE-588)4614885-1</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Mumford-Tate-Gruppe</subfield><subfield code="0">(DE-588)4614885-1</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Griffiths, Phillip</subfield><subfield code="d">1938-</subfield><subfield code="0">(DE-588)131881434</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Kerr, Matt</subfield><subfield code="d">1975-</subfield><subfield code="0">(DE-588)1022666991</subfield><subfield code="4">aut</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">978-0-691-15424-4</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">Annals of Mathematics Studies</subfield><subfield code="v">number 183</subfield><subfield code="w">(DE-604)BV040389493</subfield><subfield code="9">183</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">http://www.degruyter.com/doi/book/10.1515/9781400842735?locatt=mode:legacy</subfield><subfield code="x">Verlag</subfield><subfield code="z">URL des Erstveröffentlichers</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">http://www.degruyter.com/search?f_0=isbnissn&q_0=9781400842735&searchTitles=true</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-23-DGG</subfield><subfield code="a">ZDB-23-PST</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">FKE_PDA_DGG</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">FLA_PDA_DGG</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">FHA_PDA_DGG</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">UPA_PDA_DGG</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">FAW_PDA_DGG</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">FCO_PDA_DGG</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-027957368</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield></record></collection> |
id | DE-604.BV042523029 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T01:24:02Z |
institution | BVB |
isbn | 9781400842735 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-027957368 |
oclc_num | 909811352 |
open_access_boolean | |
owner | DE-859 DE-860 DE-Aug4 DE-739 DE-1046 DE-83 DE-1043 DE-858 |
owner_facet | DE-859 DE-860 DE-Aug4 DE-739 DE-1046 DE-83 DE-1043 DE-858 |
physical | 1 Online-Ressource (288 S.) |
psigel | ZDB-23-DGG ZDB-23-PST FKE_PDA_DGG FLA_PDA_DGG FHA_PDA_DGG UPA_PDA_DGG FAW_PDA_DGG FCO_PDA_DGG |
publishDate | 2012 |
publishDateSearch | 2012 |
publishDateSort | 2012 |
publisher | Princeton University Press |
record_format | marc |
series | Annals of Mathematics Studies |
series2 | Annals of Mathematics Studies |
spelling | Green, Mark 1947- (DE-588)129505234 aut Mumford-Tate groups and domains their geometry and arithmetic Princeton, N.J. Princeton University Press [2012] © 2012 1 Online-Ressource (288 S.) txt rdacontent c rdamedia cr rdacarrier Annals of Mathematics Studies number 183 Biographical note: Mark Green is professor of mathematics at the University of California, Los Angeles and is Director Emeritus of the Institute for Pure and Applied Mathematics. Phillip A. Griffiths is Professor Emeritus of Mathematics and former director at the Institute for Advanced Study in Princeton. Matt Kerr is assistant professor of mathematics at Washington University in St. Louis Main description: Mumford-Tate groups are the fundamental symmetry groups of Hodge theory, a subject which rests at the center of contemporary complex algebraic geometry. This book is the first comprehensive exploration of Mumford-Tate groups and domains. Containing basic theory and a wealth of new views and results, it will become an essential resource for graduate students and researchers. Although Mumford-Tate groups can be defined for general structures, their theory and use to date has mainly been in the classical case of abelian varieties. While the book does examine this area, it focuses on the nonclassical case. The general theory turns out to be very rich, such as in the unexpected connections of finite dimensional and infinite dimensional representation theory of real, semisimple Lie groups. The authors give the complete classification of Hodge representations, a topic that should become a standard in the finite-dimensional representation theory of noncompact, real, semisimple Lie groups. They also indicate that in the future, a connection seems ready to be made between Lie groups that admit discrete series representations and the study of automorphic cohomology on quotients of Mumford-Tate domains by arithmetic groups. Bringing together complex geometry, representation theory, and arithmetic, this book opens up a fresh perspective on an important subject Mumford-Tate-Gruppe (DE-588)4614885-1 gnd rswk-swf Mumford-Tate-Gruppe (DE-588)4614885-1 s 1\p DE-604 Griffiths, Phillip 1938- (DE-588)131881434 aut Kerr, Matt 1975- (DE-588)1022666991 aut Erscheint auch als Druck-Ausgabe 978-0-691-15424-4 Annals of Mathematics Studies number 183 (DE-604)BV040389493 183 http://www.degruyter.com/doi/book/10.1515/9781400842735?locatt=mode:legacy Verlag URL des Erstveröffentlichers Volltext http://www.degruyter.com/search?f_0=isbnissn&q_0=9781400842735&searchTitles=true Verlag Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Green, Mark 1947- Griffiths, Phillip 1938- Kerr, Matt 1975- Mumford-Tate groups and domains their geometry and arithmetic Annals of Mathematics Studies Mumford-Tate-Gruppe (DE-588)4614885-1 gnd |
subject_GND | (DE-588)4614885-1 |
title | Mumford-Tate groups and domains their geometry and arithmetic |
title_auth | Mumford-Tate groups and domains their geometry and arithmetic |
title_exact_search | Mumford-Tate groups and domains their geometry and arithmetic |
title_full | Mumford-Tate groups and domains their geometry and arithmetic |
title_fullStr | Mumford-Tate groups and domains their geometry and arithmetic |
title_full_unstemmed | Mumford-Tate groups and domains their geometry and arithmetic |
title_short | Mumford-Tate groups and domains |
title_sort | mumford tate groups and domains their geometry and arithmetic |
title_sub | their geometry and arithmetic |
topic | Mumford-Tate-Gruppe (DE-588)4614885-1 gnd |
topic_facet | Mumford-Tate-Gruppe |
url | http://www.degruyter.com/doi/book/10.1515/9781400842735?locatt=mode:legacy http://www.degruyter.com/search?f_0=isbnissn&q_0=9781400842735&searchTitles=true |
volume_link | (DE-604)BV040389493 |
work_keys_str_mv | AT greenmark mumfordtategroupsanddomainstheirgeometryandarithmetic AT griffithsphillip mumfordtategroupsanddomainstheirgeometryandarithmetic AT kerrmatt mumfordtategroupsanddomainstheirgeometryandarithmetic |