The decomposition of global conformal invariants:
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Princeton, N.J.
Princeton University Press
[2012]
|
Schriftenreihe: | Annals of Mathematics Studies
number 182 |
Schlagworte: | |
Online-Zugang: | Volltext Volltext |
Beschreibung: | Biographical note: AlexakisSpyros: Spyros Alexakis is assistant professor of mathematics at the University of Toronto Main description: This book addresses a basic question in differential geometry that was first considered by physicists Stanley Deser and Adam Schwimmer in 1993 in their study of conformal anomalies. The question concerns conformally invariant functionals on the space of Riemannian metrics over a given manifold. These functionals act on a metric by first constructing a Riemannian scalar out of it, and then integrating this scalar over the manifold. Suppose this integral remains invariant under conformal re-scalings of the underlying metric. What information can one then deduce about the Riemannian scalar? Deser and Schwimmer asserted that the Riemannian scalar must be a linear combination of three obvious candidates, each of which clearly satisfies the required property: a local conformal invariant, a divergence of a Riemannian vector field, and the Chern-Gauss-Bonnet integrand. This book provides a proof of this conjecture. The result itself sheds light on the algebraic structure of conformal anomalies, which appear in many settings in theoretical physics. It also clarifies the geometric significance of the renormalized volume of asymptotically hyperbolic Einstein manifolds. The methods introduced here make an interesting connection between algebraic properties of local invariants--such as the classical Riemannian invariants and the more recently studied conformal invariants--and the study of global invariants, in this case conformally invariant integrals. Key tools used to establish this connection include the Fefferman-Graham ambient metric and the author's super divergence formula |
Beschreibung: | 1 Online-Ressource (568 S.) |
ISBN: | 9781400842728 |
Internformat
MARC
LEADER | 00000nam a2200000 cb4500 | ||
---|---|---|---|
001 | BV042523028 | ||
003 | DE-604 | ||
005 | 20200403 | ||
007 | cr|uuu---uuuuu | ||
008 | 150423s2012 xx o|||| 00||| eng d | ||
020 | |a 9781400842728 |9 978-1-4008-4272-8 | ||
024 | 7 | |a 10.1515/9781400842728 |2 doi | |
035 | |a (OCoLC)890472968 | ||
035 | |a (DE-599)BVBBV042523028 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-859 |a DE-860 |a DE-739 |a DE-1046 |a DE-83 |a DE-1043 |a DE-858 | ||
084 | |a SI 830 |0 (DE-625)143195: |2 rvk | ||
084 | |a SK 260 |0 (DE-625)143227: |2 rvk | ||
100 | 1 | |a Alexakis, Spyros |d 1978- |0 (DE-588)1022979728 |4 aut | |
245 | 1 | 0 | |a The decomposition of global conformal invariants |
264 | 1 | |a Princeton, N.J. |b Princeton University Press |c [2012] | |
264 | 4 | |c © 2012 | |
300 | |a 1 Online-Ressource (568 S.) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 1 | |a Annals of Mathematics Studies |v number 182 | |
500 | |a Biographical note: AlexakisSpyros: Spyros Alexakis is assistant professor of mathematics at the University of Toronto | ||
500 | |a Main description: This book addresses a basic question in differential geometry that was first considered by physicists Stanley Deser and Adam Schwimmer in 1993 in their study of conformal anomalies. The question concerns conformally invariant functionals on the space of Riemannian metrics over a given manifold. These functionals act on a metric by first constructing a Riemannian scalar out of it, and then integrating this scalar over the manifold. Suppose this integral remains invariant under conformal re-scalings of the underlying metric. What information can one then deduce about the Riemannian scalar? Deser and Schwimmer asserted that the Riemannian scalar must be a linear combination of three obvious candidates, each of which clearly satisfies the required property: a local conformal invariant, a divergence of a Riemannian vector field, and the Chern-Gauss-Bonnet integrand. This book provides a proof of this conjecture. The result itself sheds light on the algebraic structure of conformal anomalies, which appear in many settings in theoretical physics. It also clarifies the geometric significance of the renormalized volume of asymptotically hyperbolic Einstein manifolds. The methods introduced here make an interesting connection between algebraic properties of local invariants--such as the classical Riemannian invariants and the more recently studied conformal invariants--and the study of global invariants, in this case conformally invariant integrals. Key tools used to establish this connection include the Fefferman-Graham ambient metric and the author's super divergence formula | ||
650 | 0 | 7 | |a Globale Riemannsche Geometrie |0 (DE-588)4157622-6 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Globale Riemannsche Geometrie |0 (DE-588)4157622-6 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |z 978-0-691-15347-6 |
830 | 0 | |a Annals of Mathematics Studies |v number 182 |w (DE-604)BV040389493 |9 182 | |
856 | 4 | 0 | |u http://www.degruyter.com/doi/book/10.1515/9781400842728?locatt=mode:legacy |x Verlag |z URL des Erstveröffentlichers |3 Volltext |
856 | 4 | 0 | |u http://www.degruyter.com/search?f_0=isbnissn&q_0=9781400842728&searchTitles=true |x Verlag |3 Volltext |
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
912 | |a ZDB-23-DGG | ||
912 | |a ZDB-23-PST | ||
940 | 1 | |q FKE_PDA_DGG | |
940 | 1 | |q FLA_PDA_DGG | |
940 | 1 | |q UPA_PDA_DGG | |
940 | 1 | |q FAW_PDA_DGG | |
940 | 1 | |q FCO_PDA_DGG | |
943 | 1 | |a oai:aleph.bib-bvb.de:BVB01-027957367 |
Datensatz im Suchindex
_version_ | 1824508470677733376 |
---|---|
adam_text | |
any_adam_object | |
author | Alexakis, Spyros 1978- |
author_GND | (DE-588)1022979728 |
author_facet | Alexakis, Spyros 1978- |
author_role | aut |
author_sort | Alexakis, Spyros 1978- |
author_variant | s a sa |
building | Verbundindex |
bvnumber | BV042523028 |
classification_rvk | SI 830 SK 260 |
collection | ZDB-23-DGG ZDB-23-PST |
ctrlnum | (OCoLC)890472968 (DE-599)BVBBV042523028 |
discipline | Mathematik |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>00000nam a2200000 cb4500</leader><controlfield tag="001">BV042523028</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20200403</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">150423s2012 xx o|||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781400842728</subfield><subfield code="9">978-1-4008-4272-8</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1515/9781400842728</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)890472968</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV042523028</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-859</subfield><subfield code="a">DE-860</subfield><subfield code="a">DE-739</subfield><subfield code="a">DE-1046</subfield><subfield code="a">DE-83</subfield><subfield code="a">DE-1043</subfield><subfield code="a">DE-858</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SI 830</subfield><subfield code="0">(DE-625)143195:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 260</subfield><subfield code="0">(DE-625)143227:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Alexakis, Spyros</subfield><subfield code="d">1978-</subfield><subfield code="0">(DE-588)1022979728</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">The decomposition of global conformal invariants</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Princeton, N.J.</subfield><subfield code="b">Princeton University Press</subfield><subfield code="c">[2012]</subfield></datafield><datafield tag="264" ind1=" " ind2="4"><subfield code="c">© 2012</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (568 S.)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Annals of Mathematics Studies</subfield><subfield code="v">number 182</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Biographical note: AlexakisSpyros: Spyros Alexakis is assistant professor of mathematics at the University of Toronto</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Main description: This book addresses a basic question in differential geometry that was first considered by physicists Stanley Deser and Adam Schwimmer in 1993 in their study of conformal anomalies. The question concerns conformally invariant functionals on the space of Riemannian metrics over a given manifold. These functionals act on a metric by first constructing a Riemannian scalar out of it, and then integrating this scalar over the manifold. Suppose this integral remains invariant under conformal re-scalings of the underlying metric. What information can one then deduce about the Riemannian scalar? Deser and Schwimmer asserted that the Riemannian scalar must be a linear combination of three obvious candidates, each of which clearly satisfies the required property: a local conformal invariant, a divergence of a Riemannian vector field, and the Chern-Gauss-Bonnet integrand. This book provides a proof of this conjecture. The result itself sheds light on the algebraic structure of conformal anomalies, which appear in many settings in theoretical physics. It also clarifies the geometric significance of the renormalized volume of asymptotically hyperbolic Einstein manifolds. The methods introduced here make an interesting connection between algebraic properties of local invariants--such as the classical Riemannian invariants and the more recently studied conformal invariants--and the study of global invariants, in this case conformally invariant integrals. Key tools used to establish this connection include the Fefferman-Graham ambient metric and the author's super divergence formula</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Globale Riemannsche Geometrie</subfield><subfield code="0">(DE-588)4157622-6</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Globale Riemannsche Geometrie</subfield><subfield code="0">(DE-588)4157622-6</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">978-0-691-15347-6</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">Annals of Mathematics Studies</subfield><subfield code="v">number 182</subfield><subfield code="w">(DE-604)BV040389493</subfield><subfield code="9">182</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">http://www.degruyter.com/doi/book/10.1515/9781400842728?locatt=mode:legacy</subfield><subfield code="x">Verlag</subfield><subfield code="z">URL des Erstveröffentlichers</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">http://www.degruyter.com/search?f_0=isbnissn&q_0=9781400842728&searchTitles=true</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-23-DGG</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-23-PST</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">FKE_PDA_DGG</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">FLA_PDA_DGG</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">UPA_PDA_DGG</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">FAW_PDA_DGG</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">FCO_PDA_DGG</subfield></datafield><datafield tag="943" ind1="1" ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-027957367</subfield></datafield></record></collection> |
id | DE-604.BV042523028 |
illustrated | Not Illustrated |
indexdate | 2025-02-19T17:41:08Z |
institution | BVB |
isbn | 9781400842728 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-027957367 |
oclc_num | 890472968 |
open_access_boolean | |
owner | DE-859 DE-860 DE-739 DE-1046 DE-83 DE-1043 DE-858 |
owner_facet | DE-859 DE-860 DE-739 DE-1046 DE-83 DE-1043 DE-858 |
physical | 1 Online-Ressource (568 S.) |
psigel | ZDB-23-DGG ZDB-23-PST FKE_PDA_DGG FLA_PDA_DGG UPA_PDA_DGG FAW_PDA_DGG FCO_PDA_DGG |
publishDate | 2012 |
publishDateSearch | 2012 |
publishDateSort | 2012 |
publisher | Princeton University Press |
record_format | marc |
series | Annals of Mathematics Studies |
series2 | Annals of Mathematics Studies |
spelling | Alexakis, Spyros 1978- (DE-588)1022979728 aut The decomposition of global conformal invariants Princeton, N.J. Princeton University Press [2012] © 2012 1 Online-Ressource (568 S.) txt rdacontent c rdamedia cr rdacarrier Annals of Mathematics Studies number 182 Biographical note: AlexakisSpyros: Spyros Alexakis is assistant professor of mathematics at the University of Toronto Main description: This book addresses a basic question in differential geometry that was first considered by physicists Stanley Deser and Adam Schwimmer in 1993 in their study of conformal anomalies. The question concerns conformally invariant functionals on the space of Riemannian metrics over a given manifold. These functionals act on a metric by first constructing a Riemannian scalar out of it, and then integrating this scalar over the manifold. Suppose this integral remains invariant under conformal re-scalings of the underlying metric. What information can one then deduce about the Riemannian scalar? Deser and Schwimmer asserted that the Riemannian scalar must be a linear combination of three obvious candidates, each of which clearly satisfies the required property: a local conformal invariant, a divergence of a Riemannian vector field, and the Chern-Gauss-Bonnet integrand. This book provides a proof of this conjecture. The result itself sheds light on the algebraic structure of conformal anomalies, which appear in many settings in theoretical physics. It also clarifies the geometric significance of the renormalized volume of asymptotically hyperbolic Einstein manifolds. The methods introduced here make an interesting connection between algebraic properties of local invariants--such as the classical Riemannian invariants and the more recently studied conformal invariants--and the study of global invariants, in this case conformally invariant integrals. Key tools used to establish this connection include the Fefferman-Graham ambient metric and the author's super divergence formula Globale Riemannsche Geometrie (DE-588)4157622-6 gnd rswk-swf Globale Riemannsche Geometrie (DE-588)4157622-6 s 1\p DE-604 Erscheint auch als Druck-Ausgabe 978-0-691-15347-6 Annals of Mathematics Studies number 182 (DE-604)BV040389493 182 http://www.degruyter.com/doi/book/10.1515/9781400842728?locatt=mode:legacy Verlag URL des Erstveröffentlichers Volltext http://www.degruyter.com/search?f_0=isbnissn&q_0=9781400842728&searchTitles=true Verlag Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Alexakis, Spyros 1978- The decomposition of global conformal invariants Annals of Mathematics Studies Globale Riemannsche Geometrie (DE-588)4157622-6 gnd |
subject_GND | (DE-588)4157622-6 |
title | The decomposition of global conformal invariants |
title_auth | The decomposition of global conformal invariants |
title_exact_search | The decomposition of global conformal invariants |
title_full | The decomposition of global conformal invariants |
title_fullStr | The decomposition of global conformal invariants |
title_full_unstemmed | The decomposition of global conformal invariants |
title_short | The decomposition of global conformal invariants |
title_sort | the decomposition of global conformal invariants |
topic | Globale Riemannsche Geometrie (DE-588)4157622-6 gnd |
topic_facet | Globale Riemannsche Geometrie |
url | http://www.degruyter.com/doi/book/10.1515/9781400842728?locatt=mode:legacy http://www.degruyter.com/search?f_0=isbnissn&q_0=9781400842728&searchTitles=true |
volume_link | (DE-604)BV040389493 |
work_keys_str_mv | AT alexakisspyros thedecompositionofglobalconformalinvariants |