In Pursuit of the Traveling Salesman: Mathematics at the Limits of Computation
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Princeton, N.J.
Princeton University Press
[2015]
|
Schlagworte: | |
Online-Zugang: | Volltext |
Beschreibung: | What is the shortest possible route for a traveling salesman seeking to visit each city on a list exactly once and return to his city of origin? It sounds simple enough, yet the traveling salesman problem is one of the most intensely studied puzzles in applied mathematics—and it has defied solution to this day. In this book, William Cook takes readers on a mathematical excursion, picking up the salesman’s trail in the 1800s when Irish mathematician W. R. Hamilton first defined the problem, and venturing to the furthest limits of today’s state-of-the-art attempts to solve it. He also explores its many important applications, from genome sequencing and designing computer processors to arranging music and hunting for planets. In Pursuit of the Traveling Salesman travels to the very threshold of our understanding about the nature of complexity, and challenges you yourself to discover the solution to this captivating mathematical problem.Some images inside the book are unavailable due to digital copyright restrictions |
Beschreibung: | 1 Online-Ressource (248p.) |
ISBN: | 9781400839599 |
DOI: | 10.1515/9781400839599 |
Internformat
MARC
LEADER | 00000nmm a2200000zc 4500 | ||
---|---|---|---|
001 | BV042522897 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 150423s2015 |||| o||u| ||||||eng d | ||
020 | |a 9781400839599 |9 978-1-4008-3959-9 | ||
024 | 7 | |a 10.1515/9781400839599 |2 doi | |
035 | |a (OCoLC)774285465 | ||
035 | |a (DE-599)BVBBV042522897 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
082 | 0 | |a 511/.5 | |
100 | 1 | |a Cook, William J. |e Verfasser |4 aut | |
245 | 1 | 0 | |a In Pursuit of the Traveling Salesman |b Mathematics at the Limits of Computation |c William J. Cook |
264 | 1 | |a Princeton, N.J. |b Princeton University Press |c [2015] | |
300 | |a 1 Online-Ressource (248p.) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
500 | |a What is the shortest possible route for a traveling salesman seeking to visit each city on a list exactly once and return to his city of origin? It sounds simple enough, yet the traveling salesman problem is one of the most intensely studied puzzles in applied mathematics—and it has defied solution to this day. In this book, William Cook takes readers on a mathematical excursion, picking up the salesman’s trail in the 1800s when Irish mathematician W. R. Hamilton first defined the problem, and venturing to the furthest limits of today’s state-of-the-art attempts to solve it. He also explores its many important applications, from genome sequencing and designing computer processors to arranging music and hunting for planets. In Pursuit of the Traveling Salesman travels to the very threshold of our understanding about the nature of complexity, and challenges you yourself to discover the solution to this captivating mathematical problem.Some images inside the book are unavailable due to digital copyright restrictions | ||
546 | |a In English | ||
648 | 7 | |a Geschichte 1800-2000 |2 gnd |9 rswk-swf | |
650 | 4 | |a Mathematik | |
650 | 7 | |a MATHEMATICS / General |2 bisacsh | |
650 | 4 | |a Traveling salesman problem | |
650 | 4 | |a Computational complexity | |
650 | 4 | |a MATHEMATICS |x Graphic Methods | |
650 | 0 | 7 | |a Travelling-salesman-Problem |0 (DE-588)4185966-2 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Travelling-salesman-Problem |0 (DE-588)4185966-2 |D s |
689 | 0 | 1 | |a Geschichte 1800-2000 |A z |
689 | 0 | |8 1\p |5 DE-604 | |
856 | 4 | 0 | |u https://doi.org/10.1515/9781400839599 |x Verlag |3 Volltext |
912 | |a ZDB-23-DGG | ||
999 | |a oai:aleph.bib-bvb.de:BVB01-027957236 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk |
Datensatz im Suchindex
_version_ | 1804153276166307840 |
---|---|
any_adam_object | |
author | Cook, William J. |
author_facet | Cook, William J. |
author_role | aut |
author_sort | Cook, William J. |
author_variant | w j c wj wjc |
building | Verbundindex |
bvnumber | BV042522897 |
collection | ZDB-23-DGG |
ctrlnum | (OCoLC)774285465 (DE-599)BVBBV042522897 |
dewey-full | 511/.5 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 511 - General principles of mathematics |
dewey-raw | 511/.5 |
dewey-search | 511/.5 |
dewey-sort | 3511 15 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
doi_str_mv | 10.1515/9781400839599 |
era | Geschichte 1800-2000 gnd |
era_facet | Geschichte 1800-2000 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02565nmm a2200445zc 4500</leader><controlfield tag="001">BV042522897</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">150423s2015 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781400839599</subfield><subfield code="9">978-1-4008-3959-9</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1515/9781400839599</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)774285465</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV042522897</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">511/.5</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Cook, William J.</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">In Pursuit of the Traveling Salesman</subfield><subfield code="b">Mathematics at the Limits of Computation</subfield><subfield code="c">William J. Cook</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Princeton, N.J.</subfield><subfield code="b">Princeton University Press</subfield><subfield code="c">[2015]</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (248p.)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">What is the shortest possible route for a traveling salesman seeking to visit each city on a list exactly once and return to his city of origin? It sounds simple enough, yet the traveling salesman problem is one of the most intensely studied puzzles in applied mathematics—and it has defied solution to this day. In this book, William Cook takes readers on a mathematical excursion, picking up the salesman’s trail in the 1800s when Irish mathematician W. R. Hamilton first defined the problem, and venturing to the furthest limits of today’s state-of-the-art attempts to solve it. He also explores its many important applications, from genome sequencing and designing computer processors to arranging music and hunting for planets. In Pursuit of the Traveling Salesman travels to the very threshold of our understanding about the nature of complexity, and challenges you yourself to discover the solution to this captivating mathematical problem.Some images inside the book are unavailable due to digital copyright restrictions</subfield></datafield><datafield tag="546" ind1=" " ind2=" "><subfield code="a">In English</subfield></datafield><datafield tag="648" ind1=" " ind2="7"><subfield code="a">Geschichte 1800-2000</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematik</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">MATHEMATICS / General</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Traveling salesman problem</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Computational complexity</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">MATHEMATICS</subfield><subfield code="x">Graphic Methods</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Travelling-salesman-Problem</subfield><subfield code="0">(DE-588)4185966-2</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Travelling-salesman-Problem</subfield><subfield code="0">(DE-588)4185966-2</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Geschichte 1800-2000</subfield><subfield code="A">z</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1515/9781400839599</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-23-DGG</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-027957236</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield></record></collection> |
id | DE-604.BV042522897 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T01:24:02Z |
institution | BVB |
isbn | 9781400839599 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-027957236 |
oclc_num | 774285465 |
open_access_boolean | |
physical | 1 Online-Ressource (248p.) |
psigel | ZDB-23-DGG |
publishDate | 2015 |
publishDateSearch | 2015 |
publishDateSort | 2015 |
publisher | Princeton University Press |
record_format | marc |
spelling | Cook, William J. Verfasser aut In Pursuit of the Traveling Salesman Mathematics at the Limits of Computation William J. Cook Princeton, N.J. Princeton University Press [2015] 1 Online-Ressource (248p.) txt rdacontent c rdamedia cr rdacarrier What is the shortest possible route for a traveling salesman seeking to visit each city on a list exactly once and return to his city of origin? It sounds simple enough, yet the traveling salesman problem is one of the most intensely studied puzzles in applied mathematics—and it has defied solution to this day. In this book, William Cook takes readers on a mathematical excursion, picking up the salesman’s trail in the 1800s when Irish mathematician W. R. Hamilton first defined the problem, and venturing to the furthest limits of today’s state-of-the-art attempts to solve it. He also explores its many important applications, from genome sequencing and designing computer processors to arranging music and hunting for planets. In Pursuit of the Traveling Salesman travels to the very threshold of our understanding about the nature of complexity, and challenges you yourself to discover the solution to this captivating mathematical problem.Some images inside the book are unavailable due to digital copyright restrictions In English Geschichte 1800-2000 gnd rswk-swf Mathematik MATHEMATICS / General bisacsh Traveling salesman problem Computational complexity MATHEMATICS Graphic Methods Travelling-salesman-Problem (DE-588)4185966-2 gnd rswk-swf Travelling-salesman-Problem (DE-588)4185966-2 s Geschichte 1800-2000 z 1\p DE-604 https://doi.org/10.1515/9781400839599 Verlag Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Cook, William J. In Pursuit of the Traveling Salesman Mathematics at the Limits of Computation Mathematik MATHEMATICS / General bisacsh Traveling salesman problem Computational complexity MATHEMATICS Graphic Methods Travelling-salesman-Problem (DE-588)4185966-2 gnd |
subject_GND | (DE-588)4185966-2 |
title | In Pursuit of the Traveling Salesman Mathematics at the Limits of Computation |
title_auth | In Pursuit of the Traveling Salesman Mathematics at the Limits of Computation |
title_exact_search | In Pursuit of the Traveling Salesman Mathematics at the Limits of Computation |
title_full | In Pursuit of the Traveling Salesman Mathematics at the Limits of Computation William J. Cook |
title_fullStr | In Pursuit of the Traveling Salesman Mathematics at the Limits of Computation William J. Cook |
title_full_unstemmed | In Pursuit of the Traveling Salesman Mathematics at the Limits of Computation William J. Cook |
title_short | In Pursuit of the Traveling Salesman |
title_sort | in pursuit of the traveling salesman mathematics at the limits of computation |
title_sub | Mathematics at the Limits of Computation |
topic | Mathematik MATHEMATICS / General bisacsh Traveling salesman problem Computational complexity MATHEMATICS Graphic Methods Travelling-salesman-Problem (DE-588)4185966-2 gnd |
topic_facet | Mathematik MATHEMATICS / General Traveling salesman problem Computational complexity MATHEMATICS Graphic Methods Travelling-salesman-Problem |
url | https://doi.org/10.1515/9781400839599 |
work_keys_str_mv | AT cookwilliamj inpursuitofthetravelingsalesmanmathematicsatthelimitsofcomputation |