Totally Nonnegative Matrices:
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Princeton, N.J.
Princeton University Press
2011
|
Schriftenreihe: | Princeton Series in Applied Mathematics
|
Schlagworte: | |
Online-Zugang: | Volltext Volltext |
Beschreibung: | Main description: Totally nonnegative matrices arise in a remarkable variety of mathematical applications. This book is a comprehensive and self-contained study of the essential theory of totally nonnegative matrices, defined by the nonnegativity of all subdeterminants. It explores methodological background, historical highlights of key ideas, and specialized topics. The book uses classical and ad hoc tools, but a unifying theme is the elementary bidiagonal factorization, which has emerged as the single most important tool for this particular class of matrices. Recent work has shown that bidiagonal factorizations may be viewed in a succinct combinatorial way, leading to many deep insights. Despite slow development, bidiagonal factorizations, along with determinants, now provide the dominant methodology for understanding total nonnegativity. The remainder of the book treats important topics, such as recognition of totally nonnegative or totally positive matrices, variation diminution, spectral properties, determinantal inequalities, Hadamard products, and completion problems associated with totally nonnegative or totally positive matrices. The book also contains sample applications, an up-to-date bibliography, a glossary of all symbols used, an index, and related references |
Beschreibung: | 1 Online-Ressource (264 S.) |
ISBN: | 9781400839018 |
DOI: | 10.1515/9781400839018 |
Internformat
MARC
LEADER | 00000nmm a2200000zc 4500 | ||
---|---|---|---|
001 | BV042522885 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 150423s2011 |||| o||u| ||||||eng d | ||
020 | |a 9781400839018 |9 978-1-4008-3901-8 | ||
024 | 7 | |a 10.1515/9781400839018 |2 doi | |
035 | |a (OCoLC)910101757 | ||
035 | |a (DE-599)BVBBV042522885 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
100 | 1 | |a Johnson, Charles R. |e Verfasser |4 aut | |
245 | 1 | 0 | |a Totally Nonnegative Matrices |
264 | 1 | |a Princeton, N.J. |b Princeton University Press |c 2011 | |
300 | |a 1 Online-Ressource (264 S.) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a Princeton Series in Applied Mathematics | |
500 | |a Main description: Totally nonnegative matrices arise in a remarkable variety of mathematical applications. This book is a comprehensive and self-contained study of the essential theory of totally nonnegative matrices, defined by the nonnegativity of all subdeterminants. It explores methodological background, historical highlights of key ideas, and specialized topics. The book uses classical and ad hoc tools, but a unifying theme is the elementary bidiagonal factorization, which has emerged as the single most important tool for this particular class of matrices. Recent work has shown that bidiagonal factorizations may be viewed in a succinct combinatorial way, leading to many deep insights. Despite slow development, bidiagonal factorizations, along with determinants, now provide the dominant methodology for understanding total nonnegativity. The remainder of the book treats important topics, such as recognition of totally nonnegative or totally positive matrices, variation diminution, spectral properties, determinantal inequalities, Hadamard products, and completion problems associated with totally nonnegative or totally positive matrices. The book also contains sample applications, an up-to-date bibliography, a glossary of all symbols used, an index, and related references | ||
650 | 0 | 7 | |a Nichtnegative Matrix |0 (DE-588)4310434-4 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Nichtnegative Matrix |0 (DE-588)4310434-4 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
700 | 1 | |a Fallat, Shaun M. |e Sonstige |4 oth | |
856 | 4 | 0 | |u https://doi.org/10.1515/9781400839018 |x Verlag |3 Volltext |
856 | 4 | 0 | |u http://www.degruyter.com/search?f_0=isbnissn&q_0=9781400839018&searchTitles=true |x Verlag |3 Volltext |
912 | |a ZDB-23-DGG | ||
999 | |a oai:aleph.bib-bvb.de:BVB01-027957224 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk |
Datensatz im Suchindex
_version_ | 1804153276144287744 |
---|---|
any_adam_object | |
author | Johnson, Charles R. |
author_facet | Johnson, Charles R. |
author_role | aut |
author_sort | Johnson, Charles R. |
author_variant | c r j cr crj |
building | Verbundindex |
bvnumber | BV042522885 |
collection | ZDB-23-DGG |
ctrlnum | (OCoLC)910101757 (DE-599)BVBBV042522885 |
doi_str_mv | 10.1515/9781400839018 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02619nmm a2200373zc 4500</leader><controlfield tag="001">BV042522885</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">150423s2011 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781400839018</subfield><subfield code="9">978-1-4008-3901-8</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1515/9781400839018</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)910101757</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV042522885</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Johnson, Charles R.</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Totally Nonnegative Matrices</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Princeton, N.J.</subfield><subfield code="b">Princeton University Press</subfield><subfield code="c">2011</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (264 S.)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Princeton Series in Applied Mathematics</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Main description: Totally nonnegative matrices arise in a remarkable variety of mathematical applications. This book is a comprehensive and self-contained study of the essential theory of totally nonnegative matrices, defined by the nonnegativity of all subdeterminants. It explores methodological background, historical highlights of key ideas, and specialized topics. The book uses classical and ad hoc tools, but a unifying theme is the elementary bidiagonal factorization, which has emerged as the single most important tool for this particular class of matrices. Recent work has shown that bidiagonal factorizations may be viewed in a succinct combinatorial way, leading to many deep insights. Despite slow development, bidiagonal factorizations, along with determinants, now provide the dominant methodology for understanding total nonnegativity. The remainder of the book treats important topics, such as recognition of totally nonnegative or totally positive matrices, variation diminution, spectral properties, determinantal inequalities, Hadamard products, and completion problems associated with totally nonnegative or totally positive matrices. The book also contains sample applications, an up-to-date bibliography, a glossary of all symbols used, an index, and related references</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Nichtnegative Matrix</subfield><subfield code="0">(DE-588)4310434-4</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Nichtnegative Matrix</subfield><subfield code="0">(DE-588)4310434-4</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Fallat, Shaun M.</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1515/9781400839018</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">http://www.degruyter.com/search?f_0=isbnissn&q_0=9781400839018&searchTitles=true</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-23-DGG</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-027957224</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield></record></collection> |
id | DE-604.BV042522885 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T01:24:02Z |
institution | BVB |
isbn | 9781400839018 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-027957224 |
oclc_num | 910101757 |
open_access_boolean | |
physical | 1 Online-Ressource (264 S.) |
psigel | ZDB-23-DGG |
publishDate | 2011 |
publishDateSearch | 2011 |
publishDateSort | 2011 |
publisher | Princeton University Press |
record_format | marc |
series2 | Princeton Series in Applied Mathematics |
spelling | Johnson, Charles R. Verfasser aut Totally Nonnegative Matrices Princeton, N.J. Princeton University Press 2011 1 Online-Ressource (264 S.) txt rdacontent c rdamedia cr rdacarrier Princeton Series in Applied Mathematics Main description: Totally nonnegative matrices arise in a remarkable variety of mathematical applications. This book is a comprehensive and self-contained study of the essential theory of totally nonnegative matrices, defined by the nonnegativity of all subdeterminants. It explores methodological background, historical highlights of key ideas, and specialized topics. The book uses classical and ad hoc tools, but a unifying theme is the elementary bidiagonal factorization, which has emerged as the single most important tool for this particular class of matrices. Recent work has shown that bidiagonal factorizations may be viewed in a succinct combinatorial way, leading to many deep insights. Despite slow development, bidiagonal factorizations, along with determinants, now provide the dominant methodology for understanding total nonnegativity. The remainder of the book treats important topics, such as recognition of totally nonnegative or totally positive matrices, variation diminution, spectral properties, determinantal inequalities, Hadamard products, and completion problems associated with totally nonnegative or totally positive matrices. The book also contains sample applications, an up-to-date bibliography, a glossary of all symbols used, an index, and related references Nichtnegative Matrix (DE-588)4310434-4 gnd rswk-swf Nichtnegative Matrix (DE-588)4310434-4 s 1\p DE-604 Fallat, Shaun M. Sonstige oth https://doi.org/10.1515/9781400839018 Verlag Volltext http://www.degruyter.com/search?f_0=isbnissn&q_0=9781400839018&searchTitles=true Verlag Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Johnson, Charles R. Totally Nonnegative Matrices Nichtnegative Matrix (DE-588)4310434-4 gnd |
subject_GND | (DE-588)4310434-4 |
title | Totally Nonnegative Matrices |
title_auth | Totally Nonnegative Matrices |
title_exact_search | Totally Nonnegative Matrices |
title_full | Totally Nonnegative Matrices |
title_fullStr | Totally Nonnegative Matrices |
title_full_unstemmed | Totally Nonnegative Matrices |
title_short | Totally Nonnegative Matrices |
title_sort | totally nonnegative matrices |
topic | Nichtnegative Matrix (DE-588)4310434-4 gnd |
topic_facet | Nichtnegative Matrix |
url | https://doi.org/10.1515/9781400839018 http://www.degruyter.com/search?f_0=isbnissn&q_0=9781400839018&searchTitles=true |
work_keys_str_mv | AT johnsoncharlesr totallynonnegativematrices AT fallatshaunm totallynonnegativematrices |