Nonplussed!: Mathematical Proof of Implausible Ideas
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Princeton, N.J.
Princeton University Press
2010
|
Schlagworte: | |
Online-Zugang: | DE-1043 DE-1046 DE-858 DE-859 DE-860 DE-739 Volltext Volltext |
Beschreibung: | Main description: Math--the application of reasonable logic to reasonable assumptions--usually produces reasonable results. But sometimes math generates astonishing paradoxes--conclusions that seem completely unreasonable or just plain impossible but that are nevertheless demonstrably true. Did you know that a losing sports team can become a winning one by adding worse players than its opponents? Or that the thirteenth of the month is more likely to be a Friday than any other day? Or that cones can roll unaided uphill? In Nonplussed!--a delightfully eclectic collection of paradoxes from many different areas of math--popular-math writer Julian Havil reveals the math that shows the truth of these and many other unbelievable ideas. Nonplussed! pays special attention to problems from probability and statistics, areas where intuition can easily be wrong. These problems include the vagaries of tennis scoring, what can be deduced from tossing a needle, and disadvantageous games that form winning combinations. Other chapters address everything from the historically important Torricelli's Trumpet to the mind-warping implications of objects that live on high dimensions. Readers learn about the colorful history and people associated with many of these problems in addition to their mathematical proofs. Nonplussed! will appeal to anyone with a calculus background who enjoys popular math books or puzzles |
Beschreibung: | 1 Online-Ressource (216 S.) |
ISBN: | 9781400837380 |
Internformat
MARC
LEADER | 00000nam a2200000zc 4500 | ||
---|---|---|---|
001 | BV042522812 | ||
003 | DE-604 | ||
007 | cr|uuu---uuuuu | ||
008 | 150423s2010 xx o|||| 00||| eng d | ||
020 | |a 9781400837380 |9 978-1-4008-3738-0 | ||
024 | 7 | |a 10.1515/9781400837380 |2 doi | |
035 | |a (OCoLC)909742258 | ||
035 | |a (DE-599)BVBBV042522812 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-859 |a DE-860 |a DE-739 |a DE-1046 |a DE-1043 |a DE-858 | ||
100 | 1 | |a Havil, Julian |e Verfasser |4 aut | |
245 | 1 | 0 | |a Nonplussed! |b Mathematical Proof of Implausible Ideas |
264 | 1 | |a Princeton, N.J. |b Princeton University Press |c 2010 | |
300 | |a 1 Online-Ressource (216 S.) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
500 | |a Main description: Math--the application of reasonable logic to reasonable assumptions--usually produces reasonable results. But sometimes math generates astonishing paradoxes--conclusions that seem completely unreasonable or just plain impossible but that are nevertheless demonstrably true. Did you know that a losing sports team can become a winning one by adding worse players than its opponents? Or that the thirteenth of the month is more likely to be a Friday than any other day? Or that cones can roll unaided uphill? In Nonplussed!--a delightfully eclectic collection of paradoxes from many different areas of math--popular-math writer Julian Havil reveals the math that shows the truth of these and many other unbelievable ideas. Nonplussed! pays special attention to problems from probability and statistics, areas where intuition can easily be wrong. These problems include the vagaries of tennis scoring, what can be deduced from tossing a needle, and disadvantageous games that form winning combinations. Other chapters address everything from the historically important Torricelli's Trumpet to the mind-warping implications of objects that live on high dimensions. Readers learn about the colorful history and people associated with many of these problems in addition to their mathematical proofs. Nonplussed! will appeal to anyone with a calculus background who enjoys popular math books or puzzles | ||
650 | 0 | 7 | |a Paradoxon |0 (DE-588)4044593-8 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Unterhaltungsmathematik |0 (DE-588)4124357-2 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Paradoxon |0 (DE-588)4044593-8 |D s |
689 | 0 | 1 | |a Unterhaltungsmathematik |0 (DE-588)4124357-2 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
856 | 4 | 0 | |u http://www.degruyter.com/doi/book/10.1515/9781400837380 |x Verlag |3 Volltext |
856 | 4 | 0 | |u http://www.degruyter.com/search?f_0=isbnissn&q_0=9781400837380&searchTitles=true |x Verlag |3 Volltext |
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
912 | |a ZDB-23-DGG | ||
943 | 1 | |a oai:aleph.bib-bvb.de:BVB01-027957151 | |
966 | e | |u http://www.degruyter.com/doi/book/10.1515/9781400837380?locatt=mode:legacy |l DE-1043 |p ZDB-23-DGG |x Verlag |3 Volltext | |
966 | e | |u http://www.degruyter.com/doi/book/10.1515/9781400837380?locatt=mode:legacy |l DE-1046 |p ZDB-23-DGG |q FAW_PDA_DGG |x Verlag |3 Volltext | |
966 | e | |u http://www.degruyter.com/doi/book/10.1515/9781400837380?locatt=mode:legacy |l DE-858 |p ZDB-23-DGG |q FCO_PDA_DGG |x Verlag |3 Volltext | |
966 | e | |u http://www.degruyter.com/doi/book/10.1515/9781400837380?locatt=mode:legacy |l DE-859 |p ZDB-23-DGG |q FKE_PDA_DGG |x Verlag |3 Volltext | |
966 | e | |u http://www.degruyter.com/doi/book/10.1515/9781400837380?locatt=mode:legacy |l DE-860 |p ZDB-23-DGG |q FLA_PDA_DGG |x Verlag |3 Volltext | |
966 | e | |u http://www.degruyter.com/doi/book/10.1515/9781400837380?locatt=mode:legacy |l DE-739 |p ZDB-23-DGG |q UPA_PDA_DGG |x Verlag |3 Volltext |
Datensatz im Suchindex
_version_ | 1824408206988804096 |
---|---|
adam_text | |
any_adam_object | |
author | Havil, Julian |
author_facet | Havil, Julian |
author_role | aut |
author_sort | Havil, Julian |
author_variant | j h jh |
building | Verbundindex |
bvnumber | BV042522812 |
collection | ZDB-23-DGG |
ctrlnum | (OCoLC)909742258 (DE-599)BVBBV042522812 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>00000nam a2200000zc 4500</leader><controlfield tag="001">BV042522812</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">150423s2010 xx o|||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781400837380</subfield><subfield code="9">978-1-4008-3738-0</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1515/9781400837380</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)909742258</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV042522812</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-859</subfield><subfield code="a">DE-860</subfield><subfield code="a">DE-739</subfield><subfield code="a">DE-1046</subfield><subfield code="a">DE-1043</subfield><subfield code="a">DE-858</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Havil, Julian</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Nonplussed!</subfield><subfield code="b">Mathematical Proof of Implausible Ideas</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Princeton, N.J.</subfield><subfield code="b">Princeton University Press</subfield><subfield code="c">2010</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (216 S.)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Main description: Math--the application of reasonable logic to reasonable assumptions--usually produces reasonable results. But sometimes math generates astonishing paradoxes--conclusions that seem completely unreasonable or just plain impossible but that are nevertheless demonstrably true. Did you know that a losing sports team can become a winning one by adding worse players than its opponents? Or that the thirteenth of the month is more likely to be a Friday than any other day? Or that cones can roll unaided uphill? In Nonplussed!--a delightfully eclectic collection of paradoxes from many different areas of math--popular-math writer Julian Havil reveals the math that shows the truth of these and many other unbelievable ideas. Nonplussed! pays special attention to problems from probability and statistics, areas where intuition can easily be wrong. These problems include the vagaries of tennis scoring, what can be deduced from tossing a needle, and disadvantageous games that form winning combinations. Other chapters address everything from the historically important Torricelli's Trumpet to the mind-warping implications of objects that live on high dimensions. Readers learn about the colorful history and people associated with many of these problems in addition to their mathematical proofs. Nonplussed! will appeal to anyone with a calculus background who enjoys popular math books or puzzles</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Paradoxon</subfield><subfield code="0">(DE-588)4044593-8</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Unterhaltungsmathematik</subfield><subfield code="0">(DE-588)4124357-2</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Paradoxon</subfield><subfield code="0">(DE-588)4044593-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Unterhaltungsmathematik</subfield><subfield code="0">(DE-588)4124357-2</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">http://www.degruyter.com/doi/book/10.1515/9781400837380</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">http://www.degruyter.com/search?f_0=isbnissn&q_0=9781400837380&searchTitles=true</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-23-DGG</subfield></datafield><datafield tag="943" ind1="1" ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-027957151</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">http://www.degruyter.com/doi/book/10.1515/9781400837380?locatt=mode:legacy</subfield><subfield code="l">DE-1043</subfield><subfield code="p">ZDB-23-DGG</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">http://www.degruyter.com/doi/book/10.1515/9781400837380?locatt=mode:legacy</subfield><subfield code="l">DE-1046</subfield><subfield code="p">ZDB-23-DGG</subfield><subfield code="q">FAW_PDA_DGG</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">http://www.degruyter.com/doi/book/10.1515/9781400837380?locatt=mode:legacy</subfield><subfield code="l">DE-858</subfield><subfield code="p">ZDB-23-DGG</subfield><subfield code="q">FCO_PDA_DGG</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">http://www.degruyter.com/doi/book/10.1515/9781400837380?locatt=mode:legacy</subfield><subfield code="l">DE-859</subfield><subfield code="p">ZDB-23-DGG</subfield><subfield code="q">FKE_PDA_DGG</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">http://www.degruyter.com/doi/book/10.1515/9781400837380?locatt=mode:legacy</subfield><subfield code="l">DE-860</subfield><subfield code="p">ZDB-23-DGG</subfield><subfield code="q">FLA_PDA_DGG</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">http://www.degruyter.com/doi/book/10.1515/9781400837380?locatt=mode:legacy</subfield><subfield code="l">DE-739</subfield><subfield code="p">ZDB-23-DGG</subfield><subfield code="q">UPA_PDA_DGG</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV042522812 |
illustrated | Not Illustrated |
indexdate | 2025-02-18T15:07:29Z |
institution | BVB |
isbn | 9781400837380 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-027957151 |
oclc_num | 909742258 |
open_access_boolean | |
owner | DE-859 DE-860 DE-739 DE-1046 DE-1043 DE-858 |
owner_facet | DE-859 DE-860 DE-739 DE-1046 DE-1043 DE-858 |
physical | 1 Online-Ressource (216 S.) |
psigel | ZDB-23-DGG ZDB-23-DGG FAW_PDA_DGG ZDB-23-DGG FCO_PDA_DGG ZDB-23-DGG FKE_PDA_DGG ZDB-23-DGG FLA_PDA_DGG ZDB-23-DGG UPA_PDA_DGG |
publishDate | 2010 |
publishDateSearch | 2010 |
publishDateSort | 2010 |
publisher | Princeton University Press |
record_format | marc |
spelling | Havil, Julian Verfasser aut Nonplussed! Mathematical Proof of Implausible Ideas Princeton, N.J. Princeton University Press 2010 1 Online-Ressource (216 S.) txt rdacontent c rdamedia cr rdacarrier Main description: Math--the application of reasonable logic to reasonable assumptions--usually produces reasonable results. But sometimes math generates astonishing paradoxes--conclusions that seem completely unreasonable or just plain impossible but that are nevertheless demonstrably true. Did you know that a losing sports team can become a winning one by adding worse players than its opponents? Or that the thirteenth of the month is more likely to be a Friday than any other day? Or that cones can roll unaided uphill? In Nonplussed!--a delightfully eclectic collection of paradoxes from many different areas of math--popular-math writer Julian Havil reveals the math that shows the truth of these and many other unbelievable ideas. Nonplussed! pays special attention to problems from probability and statistics, areas where intuition can easily be wrong. These problems include the vagaries of tennis scoring, what can be deduced from tossing a needle, and disadvantageous games that form winning combinations. Other chapters address everything from the historically important Torricelli's Trumpet to the mind-warping implications of objects that live on high dimensions. Readers learn about the colorful history and people associated with many of these problems in addition to their mathematical proofs. Nonplussed! will appeal to anyone with a calculus background who enjoys popular math books or puzzles Paradoxon (DE-588)4044593-8 gnd rswk-swf Unterhaltungsmathematik (DE-588)4124357-2 gnd rswk-swf Paradoxon (DE-588)4044593-8 s Unterhaltungsmathematik (DE-588)4124357-2 s 1\p DE-604 http://www.degruyter.com/doi/book/10.1515/9781400837380 Verlag Volltext http://www.degruyter.com/search?f_0=isbnissn&q_0=9781400837380&searchTitles=true Verlag Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Havil, Julian Nonplussed! Mathematical Proof of Implausible Ideas Paradoxon (DE-588)4044593-8 gnd Unterhaltungsmathematik (DE-588)4124357-2 gnd |
subject_GND | (DE-588)4044593-8 (DE-588)4124357-2 |
title | Nonplussed! Mathematical Proof of Implausible Ideas |
title_auth | Nonplussed! Mathematical Proof of Implausible Ideas |
title_exact_search | Nonplussed! Mathematical Proof of Implausible Ideas |
title_full | Nonplussed! Mathematical Proof of Implausible Ideas |
title_fullStr | Nonplussed! Mathematical Proof of Implausible Ideas |
title_full_unstemmed | Nonplussed! Mathematical Proof of Implausible Ideas |
title_short | Nonplussed! |
title_sort | nonplussed mathematical proof of implausible ideas |
title_sub | Mathematical Proof of Implausible Ideas |
topic | Paradoxon (DE-588)4044593-8 gnd Unterhaltungsmathematik (DE-588)4124357-2 gnd |
topic_facet | Paradoxon Unterhaltungsmathematik |
url | http://www.degruyter.com/doi/book/10.1515/9781400837380 http://www.degruyter.com/search?f_0=isbnissn&q_0=9781400837380&searchTitles=true |
work_keys_str_mv | AT haviljulian nonplussedmathematicalproofofimplausibleideas |