Spherical CR geometry and Dehn surgery:
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Princeton, N.J.
Princeton University Press
[2007]
|
Schriftenreihe: | Annals of Mathematics Studies
number 165 |
Schlagworte: | |
Online-Zugang: | Volltext Volltext |
Beschreibung: | Main description: This book proves an analogue of William Thurston's celebrated hyperbolic Dehn surgery theorem in the context of complex hyperbolic discrete groups, and then derives two main geometric consequences from it. The first is the construction of large numbers of closed real hyperbolic 3-manifolds which bound complex hyperbolic orbifolds--the only known examples of closed manifolds that simultaneously have these two kinds of geometric structures. The second is a complete understanding of the structure of complex hyperbolic reflection triangle groups in cases where the angle is small. In an accessible and straightforward manner, Richard Evan Schwartz also presents a large amount of useful information on complex hyperbolic geometry and discrete groups. Schwartz relies on elementary proofs and avoids quotations of preexisting technical material as much as possible. For this reason, this book will benefit graduate students seeking entry into this emerging area of research, as well as researchers in allied fields such as Kleinian groups and CR geometry |
Beschreibung: | 1 Online-Ressource (200 S.) |
ISBN: | 9781400837199 |
DOI: | 10.1515/9781400837199 |
Internformat
MARC
LEADER | 00000nmm a2200000 cb4500 | ||
---|---|---|---|
001 | BV042522799 | ||
003 | DE-604 | ||
005 | 20200331 | ||
007 | cr|uuu---uuuuu | ||
008 | 150423s2007 |||| o||u| ||||||eng d | ||
020 | |a 9781400837199 |9 978-1-4008-3719-9 | ||
024 | 7 | |a 10.1515/9781400837199 |2 doi | |
035 | |a (OCoLC)1165545773 | ||
035 | |a (DE-599)BVBBV042522799 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-859 |a DE-860 |a DE-Aug4 |a DE-739 |a DE-1046 |a DE-83 |a DE-1043 |a DE-858 | ||
084 | |a SK 350 |0 (DE-625)143233: |2 rvk | ||
100 | 1 | |a Schwartz, Richard Evan |d 1966- |0 (DE-588)102219111X |4 aut | |
245 | 1 | 0 | |a Spherical CR geometry and Dehn surgery |
264 | 1 | |a Princeton, N.J. |b Princeton University Press |c [2007] | |
264 | 4 | |c © 2007 | |
300 | |a 1 Online-Ressource (200 S.) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 1 | |a Annals of Mathematics Studies |v number 165 | |
500 | |a Main description: This book proves an analogue of William Thurston's celebrated hyperbolic Dehn surgery theorem in the context of complex hyperbolic discrete groups, and then derives two main geometric consequences from it. The first is the construction of large numbers of closed real hyperbolic 3-manifolds which bound complex hyperbolic orbifolds--the only known examples of closed manifolds that simultaneously have these two kinds of geometric structures. The second is a complete understanding of the structure of complex hyperbolic reflection triangle groups in cases where the angle is small. In an accessible and straightforward manner, Richard Evan Schwartz also presents a large amount of useful information on complex hyperbolic geometry and discrete groups. Schwartz relies on elementary proofs and avoids quotations of preexisting technical material as much as possible. For this reason, this book will benefit graduate students seeking entry into this emerging area of research, as well as researchers in allied fields such as Kleinian groups and CR geometry | ||
650 | 0 | 7 | |a Komplexe Geometrie |0 (DE-588)4164898-5 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Cauchy-Riemannsche Untermannigfaltigkeit |0 (DE-588)4208176-2 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Dimension 3 |0 (DE-588)4321722-9 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Cauchy-Riemannsche Untermannigfaltigkeit |0 (DE-588)4208176-2 |D s |
689 | 0 | 1 | |a Dimension 3 |0 (DE-588)4321722-9 |D s |
689 | 0 | 2 | |a Komplexe Geometrie |0 (DE-588)4164898-5 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |z 978-0-691-12809-2 |
830 | 0 | |a Annals of Mathematics Studies |v number 165 |w (DE-604)BV040389493 |9 165 | |
856 | 4 | 0 | |u https://doi.org/10.1515/9781400837199?locatt=mode:legacy |x Verlag |z URL des Erstveröffentlichers |3 Volltext |
856 | 4 | 0 | |u http://www.degruyter.com/search?f_0=isbnissn&q_0=9781400837199&searchTitles=true |x Verlag |3 Volltext |
912 | |a ZDB-23-DGG |a ZDB-23-PST | ||
940 | 1 | |q FKE_PDA_DGG | |
940 | 1 | |q FLA_PDA_DGG | |
940 | 1 | |q FHA_PDA_DGG | |
940 | 1 | |q UPA_PDA_DGG | |
940 | 1 | |q FAW_PDA_DGG | |
940 | 1 | |q FCO_PDA_DGG | |
999 | |a oai:aleph.bib-bvb.de:BVB01-027957138 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk |
Datensatz im Suchindex
_version_ | 1804153275917795328 |
---|---|
any_adam_object | |
author | Schwartz, Richard Evan 1966- |
author_GND | (DE-588)102219111X |
author_facet | Schwartz, Richard Evan 1966- |
author_role | aut |
author_sort | Schwartz, Richard Evan 1966- |
author_variant | r e s re res |
building | Verbundindex |
bvnumber | BV042522799 |
classification_rvk | SK 350 |
collection | ZDB-23-DGG ZDB-23-PST |
ctrlnum | (OCoLC)1165545773 (DE-599)BVBBV042522799 |
discipline | Mathematik |
doi_str_mv | 10.1515/9781400837199 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03197nmm a2200541 cb4500</leader><controlfield tag="001">BV042522799</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20200331 </controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">150423s2007 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781400837199</subfield><subfield code="9">978-1-4008-3719-9</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1515/9781400837199</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1165545773</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV042522799</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-859</subfield><subfield code="a">DE-860</subfield><subfield code="a">DE-Aug4</subfield><subfield code="a">DE-739</subfield><subfield code="a">DE-1046</subfield><subfield code="a">DE-83</subfield><subfield code="a">DE-1043</subfield><subfield code="a">DE-858</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 350</subfield><subfield code="0">(DE-625)143233:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Schwartz, Richard Evan</subfield><subfield code="d">1966-</subfield><subfield code="0">(DE-588)102219111X</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Spherical CR geometry and Dehn surgery</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Princeton, N.J.</subfield><subfield code="b">Princeton University Press</subfield><subfield code="c">[2007]</subfield></datafield><datafield tag="264" ind1=" " ind2="4"><subfield code="c">© 2007</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (200 S.)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Annals of Mathematics Studies</subfield><subfield code="v">number 165</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Main description: This book proves an analogue of William Thurston's celebrated hyperbolic Dehn surgery theorem in the context of complex hyperbolic discrete groups, and then derives two main geometric consequences from it. The first is the construction of large numbers of closed real hyperbolic 3-manifolds which bound complex hyperbolic orbifolds--the only known examples of closed manifolds that simultaneously have these two kinds of geometric structures. The second is a complete understanding of the structure of complex hyperbolic reflection triangle groups in cases where the angle is small. In an accessible and straightforward manner, Richard Evan Schwartz also presents a large amount of useful information on complex hyperbolic geometry and discrete groups. Schwartz relies on elementary proofs and avoids quotations of preexisting technical material as much as possible. For this reason, this book will benefit graduate students seeking entry into this emerging area of research, as well as researchers in allied fields such as Kleinian groups and CR geometry</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Komplexe Geometrie</subfield><subfield code="0">(DE-588)4164898-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Cauchy-Riemannsche Untermannigfaltigkeit</subfield><subfield code="0">(DE-588)4208176-2</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Dimension 3</subfield><subfield code="0">(DE-588)4321722-9</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Cauchy-Riemannsche Untermannigfaltigkeit</subfield><subfield code="0">(DE-588)4208176-2</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Dimension 3</subfield><subfield code="0">(DE-588)4321722-9</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="2"><subfield code="a">Komplexe Geometrie</subfield><subfield code="0">(DE-588)4164898-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">978-0-691-12809-2</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">Annals of Mathematics Studies</subfield><subfield code="v">number 165</subfield><subfield code="w">(DE-604)BV040389493</subfield><subfield code="9">165</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1515/9781400837199?locatt=mode:legacy</subfield><subfield code="x">Verlag</subfield><subfield code="z">URL des Erstveröffentlichers</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">http://www.degruyter.com/search?f_0=isbnissn&q_0=9781400837199&searchTitles=true</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-23-DGG</subfield><subfield code="a">ZDB-23-PST</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">FKE_PDA_DGG</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">FLA_PDA_DGG</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">FHA_PDA_DGG</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">UPA_PDA_DGG</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">FAW_PDA_DGG</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">FCO_PDA_DGG</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-027957138</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield></record></collection> |
id | DE-604.BV042522799 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T01:24:02Z |
institution | BVB |
isbn | 9781400837199 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-027957138 |
oclc_num | 1165545773 |
open_access_boolean | |
owner | DE-859 DE-860 DE-Aug4 DE-739 DE-1046 DE-83 DE-1043 DE-858 |
owner_facet | DE-859 DE-860 DE-Aug4 DE-739 DE-1046 DE-83 DE-1043 DE-858 |
physical | 1 Online-Ressource (200 S.) |
psigel | ZDB-23-DGG ZDB-23-PST FKE_PDA_DGG FLA_PDA_DGG FHA_PDA_DGG UPA_PDA_DGG FAW_PDA_DGG FCO_PDA_DGG |
publishDate | 2007 |
publishDateSearch | 2007 |
publishDateSort | 2007 |
publisher | Princeton University Press |
record_format | marc |
series | Annals of Mathematics Studies |
series2 | Annals of Mathematics Studies |
spelling | Schwartz, Richard Evan 1966- (DE-588)102219111X aut Spherical CR geometry and Dehn surgery Princeton, N.J. Princeton University Press [2007] © 2007 1 Online-Ressource (200 S.) txt rdacontent c rdamedia cr rdacarrier Annals of Mathematics Studies number 165 Main description: This book proves an analogue of William Thurston's celebrated hyperbolic Dehn surgery theorem in the context of complex hyperbolic discrete groups, and then derives two main geometric consequences from it. The first is the construction of large numbers of closed real hyperbolic 3-manifolds which bound complex hyperbolic orbifolds--the only known examples of closed manifolds that simultaneously have these two kinds of geometric structures. The second is a complete understanding of the structure of complex hyperbolic reflection triangle groups in cases where the angle is small. In an accessible and straightforward manner, Richard Evan Schwartz also presents a large amount of useful information on complex hyperbolic geometry and discrete groups. Schwartz relies on elementary proofs and avoids quotations of preexisting technical material as much as possible. For this reason, this book will benefit graduate students seeking entry into this emerging area of research, as well as researchers in allied fields such as Kleinian groups and CR geometry Komplexe Geometrie (DE-588)4164898-5 gnd rswk-swf Cauchy-Riemannsche Untermannigfaltigkeit (DE-588)4208176-2 gnd rswk-swf Dimension 3 (DE-588)4321722-9 gnd rswk-swf Cauchy-Riemannsche Untermannigfaltigkeit (DE-588)4208176-2 s Dimension 3 (DE-588)4321722-9 s Komplexe Geometrie (DE-588)4164898-5 s 1\p DE-604 Erscheint auch als Druck-Ausgabe 978-0-691-12809-2 Annals of Mathematics Studies number 165 (DE-604)BV040389493 165 https://doi.org/10.1515/9781400837199?locatt=mode:legacy Verlag URL des Erstveröffentlichers Volltext http://www.degruyter.com/search?f_0=isbnissn&q_0=9781400837199&searchTitles=true Verlag Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Schwartz, Richard Evan 1966- Spherical CR geometry and Dehn surgery Annals of Mathematics Studies Komplexe Geometrie (DE-588)4164898-5 gnd Cauchy-Riemannsche Untermannigfaltigkeit (DE-588)4208176-2 gnd Dimension 3 (DE-588)4321722-9 gnd |
subject_GND | (DE-588)4164898-5 (DE-588)4208176-2 (DE-588)4321722-9 |
title | Spherical CR geometry and Dehn surgery |
title_auth | Spherical CR geometry and Dehn surgery |
title_exact_search | Spherical CR geometry and Dehn surgery |
title_full | Spherical CR geometry and Dehn surgery |
title_fullStr | Spherical CR geometry and Dehn surgery |
title_full_unstemmed | Spherical CR geometry and Dehn surgery |
title_short | Spherical CR geometry and Dehn surgery |
title_sort | spherical cr geometry and dehn surgery |
topic | Komplexe Geometrie (DE-588)4164898-5 gnd Cauchy-Riemannsche Untermannigfaltigkeit (DE-588)4208176-2 gnd Dimension 3 (DE-588)4321722-9 gnd |
topic_facet | Komplexe Geometrie Cauchy-Riemannsche Untermannigfaltigkeit Dimension 3 |
url | https://doi.org/10.1515/9781400837199?locatt=mode:legacy http://www.degruyter.com/search?f_0=isbnissn&q_0=9781400837199&searchTitles=true |
volume_link | (DE-604)BV040389493 |
work_keys_str_mv | AT schwartzrichardevan sphericalcrgeometryanddehnsurgery |