Gamma: Exploring Euler's Constant
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Princeton, N.J.
Princeton University Press
2009
|
Schriftenreihe: | Princeton Science Library
|
Schlagworte: | |
Online-Zugang: | FAB01 FAW01 FCO01 FHA01 FKE01 FLA01 UPA01 Volltext Volltext |
Beschreibung: | Main description: Among the myriad of constants that appear in mathematics, p, e, and i are the most familiar. Following closely behind is g, or gamma, a constant that arises in many mathematical areas yet maintains a profound sense of mystery. In a tantalizing blend of history and mathematics, Julian Havil takes the reader on a journey through logarithms and the harmonic series, the two defining elements of gamma, toward the first account of gamma's place in mathematics. Introduced by the Swiss mathematician Leonhard Euler (1707-1783), who figures prominently in this book, gamma is defined as the limit of the sum of 1 + 1/2 + 1/3 + . . . up to 1/n, minus the natural logarithm of n--the numerical value being 0.5772156. . .. But unlike its more celebrated colleagues p and e, the exact nature of gamma remains a mystery--we don't even know if gamma can be expressed as a fraction. Among the numerous topics that arise during this historical odyssey into fundamental mathematical ideas are the Prime Number Theorem and the most important open problem in mathematics today--the Riemann Hypothesis (though no proof of either is offered!). Sure to be popular with not only students and instructors but all math aficionados, Gamma takes us through countries, centuries, lives, and works, unfolding along the way the stories of some remarkable mathematics from some remarkable mathematicians |
Beschreibung: | 1 Online-Ressource (296 S.) |
ISBN: | 9781400832538 |
DOI: | 10.1515/9781400832538 |
Internformat
MARC
LEADER | 00000nmm a2200000zc 4500 | ||
---|---|---|---|
001 | BV042522602 | ||
003 | DE-604 | ||
005 | 20200228 | ||
007 | cr|uuu---uuuuu | ||
008 | 150423s2009 |||| o||u| ||||||eng d | ||
020 | |a 9781400832538 |9 978-1-4008-3253-8 | ||
024 | 7 | |a 10.1515/9781400832538 |2 doi | |
035 | |a (OCoLC)778599604 | ||
035 | |a (DE-599)BVBBV042522602 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-859 |a DE-860 |a DE-Aug4 |a DE-739 |a DE-1046 |a DE-1043 |a DE-858 | ||
082 | 0 | |a 513 | |
100 | 1 | |a Havil, Julian |d 1952- |e Verfasser |0 (DE-588)139236805 |4 aut | |
245 | 1 | 0 | |a Gamma |b Exploring Euler's Constant |
264 | 1 | |a Princeton, N.J. |b Princeton University Press |c 2009 | |
300 | |a 1 Online-Ressource (296 S.) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a Princeton Science Library | |
500 | |a Main description: Among the myriad of constants that appear in mathematics, p, e, and i are the most familiar. Following closely behind is g, or gamma, a constant that arises in many mathematical areas yet maintains a profound sense of mystery. In a tantalizing blend of history and mathematics, Julian Havil takes the reader on a journey through logarithms and the harmonic series, the two defining elements of gamma, toward the first account of gamma's place in mathematics. Introduced by the Swiss mathematician Leonhard Euler (1707-1783), who figures prominently in this book, gamma is defined as the limit of the sum of 1 + 1/2 + 1/3 + . . . up to 1/n, minus the natural logarithm of n--the numerical value being 0.5772156. . .. But unlike its more celebrated colleagues p and e, the exact nature of gamma remains a mystery--we don't even know if gamma can be expressed as a fraction. Among the numerous topics that arise during this historical odyssey into fundamental mathematical ideas are the Prime Number Theorem and the most important open problem in mathematics today--the Riemann Hypothesis (though no proof of either is offered!). Sure to be popular with not only students and instructors but all math aficionados, Gamma takes us through countries, centuries, lives, and works, unfolding along the way the stories of some remarkable mathematics from some remarkable mathematicians | ||
600 | 1 | 7 | |a Euler, Leonhard |d 1707-1783 |0 (DE-588)118531379 |2 gnd |9 rswk-swf |
648 | 7 | |a Geschichte 1700-2000 |2 gnd |9 rswk-swf | |
648 | 7 | |a Geschichte |2 gnd |9 rswk-swf | |
650 | 0 | 7 | |a Eulersche Konstante |0 (DE-588)4227778-4 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Eulersche Konstante |0 (DE-588)4227778-4 |D s |
689 | 0 | 1 | |a Geschichte |A z |
689 | 0 | |8 1\p |5 DE-604 | |
689 | 1 | 0 | |a Eulersche Konstante |0 (DE-588)4227778-4 |D s |
689 | 1 | 1 | |a Geschichte 1700-2000 |A z |
689 | 1 | |8 2\p |5 DE-604 | |
689 | 2 | 0 | |a Euler, Leonhard |d 1707-1783 |0 (DE-588)118531379 |D p |
689 | 2 | |8 3\p |5 DE-604 | |
700 | 1 | |a Dyson, Freeman J. |d 1923-2020 |e Sonstige |0 (DE-588)119206269 |4 oth | |
856 | 4 | 0 | |u https://doi.org/10.1515/9781400832538 |x Verlag |3 Volltext |
856 | 4 | 0 | |u http://www.degruyter.com/search?f_0=isbnissn&q_0=9781400832538&searchTitles=true |x Verlag |3 Volltext |
912 | |a ZDB-23-DGG | ||
999 | |a oai:aleph.bib-bvb.de:BVB01-027956941 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 2\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 3\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
966 | e | |u https://doi.org/10.1515/9781400832538?locatt=mode:legacy |l FAB01 |p ZDB-23-DGG |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1515/9781400832538?locatt=mode:legacy |l FAW01 |p ZDB-23-DGG |q FAW_PDA_DGG |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1515/9781400832538?locatt=mode:legacy |l FCO01 |p ZDB-23-DGG |q FCO_PDA_DGG |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1515/9781400832538?locatt=mode:legacy |l FHA01 |p ZDB-23-DGG |q FHA_PDA_DGG |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1515/9781400832538?locatt=mode:legacy |l FKE01 |p ZDB-23-DGG |q FKE_PDA_DGG |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1515/9781400832538?locatt=mode:legacy |l FLA01 |p ZDB-23-DGG |q FLA_PDA_DGG |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1515/9781400832538?locatt=mode:legacy |l UPA01 |p ZDB-23-DGG |q UPA_PDA_DGG |x Verlag |3 Volltext |
Datensatz im Suchindex
_version_ | 1804153275514093568 |
---|---|
any_adam_object | |
author | Havil, Julian 1952- |
author_GND | (DE-588)139236805 (DE-588)119206269 |
author_facet | Havil, Julian 1952- |
author_role | aut |
author_sort | Havil, Julian 1952- |
author_variant | j h jh |
building | Verbundindex |
bvnumber | BV042522602 |
collection | ZDB-23-DGG |
ctrlnum | (OCoLC)778599604 (DE-599)BVBBV042522602 |
dewey-full | 513 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 513 - Arithmetic |
dewey-raw | 513 |
dewey-search | 513 |
dewey-sort | 3513 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
doi_str_mv | 10.1515/9781400832538 |
era | Geschichte 1700-2000 gnd Geschichte gnd |
era_facet | Geschichte 1700-2000 Geschichte |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>04294nmm a2200613zc 4500</leader><controlfield tag="001">BV042522602</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20200228 </controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">150423s2009 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781400832538</subfield><subfield code="9">978-1-4008-3253-8</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1515/9781400832538</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)778599604</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV042522602</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-859</subfield><subfield code="a">DE-860</subfield><subfield code="a">DE-Aug4</subfield><subfield code="a">DE-739</subfield><subfield code="a">DE-1046</subfield><subfield code="a">DE-1043</subfield><subfield code="a">DE-858</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">513</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Havil, Julian</subfield><subfield code="d">1952-</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)139236805</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Gamma</subfield><subfield code="b">Exploring Euler's Constant</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Princeton, N.J.</subfield><subfield code="b">Princeton University Press</subfield><subfield code="c">2009</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (296 S.)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Princeton Science Library</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Main description: Among the myriad of constants that appear in mathematics, p, e, and i are the most familiar. Following closely behind is g, or gamma, a constant that arises in many mathematical areas yet maintains a profound sense of mystery. In a tantalizing blend of history and mathematics, Julian Havil takes the reader on a journey through logarithms and the harmonic series, the two defining elements of gamma, toward the first account of gamma's place in mathematics. Introduced by the Swiss mathematician Leonhard Euler (1707-1783), who figures prominently in this book, gamma is defined as the limit of the sum of 1 + 1/2 + 1/3 + . . . up to 1/n, minus the natural logarithm of n--the numerical value being 0.5772156. . .. But unlike its more celebrated colleagues p and e, the exact nature of gamma remains a mystery--we don't even know if gamma can be expressed as a fraction. Among the numerous topics that arise during this historical odyssey into fundamental mathematical ideas are the Prime Number Theorem and the most important open problem in mathematics today--the Riemann Hypothesis (though no proof of either is offered!). Sure to be popular with not only students and instructors but all math aficionados, Gamma takes us through countries, centuries, lives, and works, unfolding along the way the stories of some remarkable mathematics from some remarkable mathematicians</subfield></datafield><datafield tag="600" ind1="1" ind2="7"><subfield code="a">Euler, Leonhard</subfield><subfield code="d">1707-1783</subfield><subfield code="0">(DE-588)118531379</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="648" ind1=" " ind2="7"><subfield code="a">Geschichte 1700-2000</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="648" ind1=" " ind2="7"><subfield code="a">Geschichte</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Eulersche Konstante</subfield><subfield code="0">(DE-588)4227778-4</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Eulersche Konstante</subfield><subfield code="0">(DE-588)4227778-4</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Geschichte</subfield><subfield code="A">z</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Eulersche Konstante</subfield><subfield code="0">(DE-588)4227778-4</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2="1"><subfield code="a">Geschichte 1700-2000</subfield><subfield code="A">z</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="2" ind2="0"><subfield code="a">Euler, Leonhard</subfield><subfield code="d">1707-1783</subfield><subfield code="0">(DE-588)118531379</subfield><subfield code="D">p</subfield></datafield><datafield tag="689" ind1="2" ind2=" "><subfield code="8">3\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Dyson, Freeman J.</subfield><subfield code="d">1923-2020</subfield><subfield code="e">Sonstige</subfield><subfield code="0">(DE-588)119206269</subfield><subfield code="4">oth</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1515/9781400832538</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">http://www.degruyter.com/search?f_0=isbnissn&q_0=9781400832538&searchTitles=true</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-23-DGG</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-027956941</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">3\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1515/9781400832538?locatt=mode:legacy</subfield><subfield code="l">FAB01</subfield><subfield code="p">ZDB-23-DGG</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1515/9781400832538?locatt=mode:legacy</subfield><subfield code="l">FAW01</subfield><subfield code="p">ZDB-23-DGG</subfield><subfield code="q">FAW_PDA_DGG</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1515/9781400832538?locatt=mode:legacy</subfield><subfield code="l">FCO01</subfield><subfield code="p">ZDB-23-DGG</subfield><subfield code="q">FCO_PDA_DGG</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1515/9781400832538?locatt=mode:legacy</subfield><subfield code="l">FHA01</subfield><subfield code="p">ZDB-23-DGG</subfield><subfield code="q">FHA_PDA_DGG</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1515/9781400832538?locatt=mode:legacy</subfield><subfield code="l">FKE01</subfield><subfield code="p">ZDB-23-DGG</subfield><subfield code="q">FKE_PDA_DGG</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1515/9781400832538?locatt=mode:legacy</subfield><subfield code="l">FLA01</subfield><subfield code="p">ZDB-23-DGG</subfield><subfield code="q">FLA_PDA_DGG</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1515/9781400832538?locatt=mode:legacy</subfield><subfield code="l">UPA01</subfield><subfield code="p">ZDB-23-DGG</subfield><subfield code="q">UPA_PDA_DGG</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV042522602 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T01:24:01Z |
institution | BVB |
isbn | 9781400832538 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-027956941 |
oclc_num | 778599604 |
open_access_boolean | |
owner | DE-859 DE-860 DE-Aug4 DE-739 DE-1046 DE-1043 DE-858 |
owner_facet | DE-859 DE-860 DE-Aug4 DE-739 DE-1046 DE-1043 DE-858 |
physical | 1 Online-Ressource (296 S.) |
psigel | ZDB-23-DGG ZDB-23-DGG FAW_PDA_DGG ZDB-23-DGG FCO_PDA_DGG ZDB-23-DGG FHA_PDA_DGG ZDB-23-DGG FKE_PDA_DGG ZDB-23-DGG FLA_PDA_DGG ZDB-23-DGG UPA_PDA_DGG |
publishDate | 2009 |
publishDateSearch | 2009 |
publishDateSort | 2009 |
publisher | Princeton University Press |
record_format | marc |
series2 | Princeton Science Library |
spelling | Havil, Julian 1952- Verfasser (DE-588)139236805 aut Gamma Exploring Euler's Constant Princeton, N.J. Princeton University Press 2009 1 Online-Ressource (296 S.) txt rdacontent c rdamedia cr rdacarrier Princeton Science Library Main description: Among the myriad of constants that appear in mathematics, p, e, and i are the most familiar. Following closely behind is g, or gamma, a constant that arises in many mathematical areas yet maintains a profound sense of mystery. In a tantalizing blend of history and mathematics, Julian Havil takes the reader on a journey through logarithms and the harmonic series, the two defining elements of gamma, toward the first account of gamma's place in mathematics. Introduced by the Swiss mathematician Leonhard Euler (1707-1783), who figures prominently in this book, gamma is defined as the limit of the sum of 1 + 1/2 + 1/3 + . . . up to 1/n, minus the natural logarithm of n--the numerical value being 0.5772156. . .. But unlike its more celebrated colleagues p and e, the exact nature of gamma remains a mystery--we don't even know if gamma can be expressed as a fraction. Among the numerous topics that arise during this historical odyssey into fundamental mathematical ideas are the Prime Number Theorem and the most important open problem in mathematics today--the Riemann Hypothesis (though no proof of either is offered!). Sure to be popular with not only students and instructors but all math aficionados, Gamma takes us through countries, centuries, lives, and works, unfolding along the way the stories of some remarkable mathematics from some remarkable mathematicians Euler, Leonhard 1707-1783 (DE-588)118531379 gnd rswk-swf Geschichte 1700-2000 gnd rswk-swf Geschichte gnd rswk-swf Eulersche Konstante (DE-588)4227778-4 gnd rswk-swf Eulersche Konstante (DE-588)4227778-4 s Geschichte z 1\p DE-604 Geschichte 1700-2000 z 2\p DE-604 Euler, Leonhard 1707-1783 (DE-588)118531379 p 3\p DE-604 Dyson, Freeman J. 1923-2020 Sonstige (DE-588)119206269 oth https://doi.org/10.1515/9781400832538 Verlag Volltext http://www.degruyter.com/search?f_0=isbnissn&q_0=9781400832538&searchTitles=true Verlag Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 2\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 3\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Havil, Julian 1952- Gamma Exploring Euler's Constant Euler, Leonhard 1707-1783 (DE-588)118531379 gnd Eulersche Konstante (DE-588)4227778-4 gnd |
subject_GND | (DE-588)118531379 (DE-588)4227778-4 |
title | Gamma Exploring Euler's Constant |
title_auth | Gamma Exploring Euler's Constant |
title_exact_search | Gamma Exploring Euler's Constant |
title_full | Gamma Exploring Euler's Constant |
title_fullStr | Gamma Exploring Euler's Constant |
title_full_unstemmed | Gamma Exploring Euler's Constant |
title_short | Gamma |
title_sort | gamma exploring euler s constant |
title_sub | Exploring Euler's Constant |
topic | Euler, Leonhard 1707-1783 (DE-588)118531379 gnd Eulersche Konstante (DE-588)4227778-4 gnd |
topic_facet | Euler, Leonhard 1707-1783 Eulersche Konstante |
url | https://doi.org/10.1515/9781400832538 http://www.degruyter.com/search?f_0=isbnissn&q_0=9781400832538&searchTitles=true |
work_keys_str_mv | AT haviljulian gammaexploringeulersconstant AT dysonfreemanj gammaexploringeulersconstant |