Lectures on resolution of singularities:
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Princeton, N.J.
Princeton University Press
[2007]
|
Schriftenreihe: | Annals of Mathematics Studies
number 166 |
Schlagworte: | |
Online-Zugang: | Volltext Volltext |
Beschreibung: | Main description: Resolution of singularities is a powerful and frequently used tool in algebraic geometry. In this book, János Kollár provides a comprehensive treatment of the characteristic 0 case. He describes more than a dozen proofs for curves, many based on the original papers of Newton, Riemann, and Noether. Kollár goes back to the original sources and presents them in a modern context. He addresses three methods for surfaces, and gives a self-contained and entirely elementary proof of a strong and functorial resolution in all dimensions. Based on a series of lectures at Princeton University and written in an informal yet lucid style, this book is aimed at readers who are interested in both the historical roots of the modern methods and in a simple and transparent proof of this important theorem |
Beschreibung: | 1 Online-Ressource (208 S.) |
ISBN: | 9781400827800 |
DOI: | 10.1515/9781400827800 |
Internformat
MARC
LEADER | 00000nam a2200000 cb4500 | ||
---|---|---|---|
001 | BV042522381 | ||
003 | DE-604 | ||
005 | 20200331 | ||
007 | cr|uuu---uuuuu | ||
008 | 150423s2007 xx o|||| 00||| eng d | ||
020 | |a 9781400827800 |9 978-1-4008-2780-0 | ||
024 | 7 | |a 10.1515/9781400827800 |2 doi | |
035 | |a (OCoLC)1165455548 | ||
035 | |a (DE-599)BVBBV042522381 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-859 |a DE-860 |a DE-739 |a DE-1046 |a DE-83 |a DE-1043 |a DE-858 | ||
084 | |a SK 240 |0 (DE-625)143226: |2 rvk | ||
100 | 1 | |a Kollár, János |d 1956- |0 (DE-588)113796277 |4 aut | |
245 | 1 | 0 | |a Lectures on resolution of singularities |
264 | 1 | |a Princeton, N.J. |b Princeton University Press |c [2007] | |
264 | 4 | |c © 2007 | |
300 | |a 1 Online-Ressource (208 S.) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 1 | |a Annals of Mathematics Studies |v number 166 | |
500 | |a Main description: Resolution of singularities is a powerful and frequently used tool in algebraic geometry. In this book, János Kollár provides a comprehensive treatment of the characteristic 0 case. He describes more than a dozen proofs for curves, many based on the original papers of Newton, Riemann, and Noether. Kollár goes back to the original sources and presents them in a modern context. He addresses three methods for surfaces, and gives a self-contained and entirely elementary proof of a strong and functorial resolution in all dimensions. Based on a series of lectures at Princeton University and written in an informal yet lucid style, this book is aimed at readers who are interested in both the historical roots of the modern methods and in a simple and transparent proof of this important theorem | ||
650 | 0 | 7 | |a Algebraische Fläche |0 (DE-588)4195660-6 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Auflösung von Singularitäten |0 (DE-588)4181537-3 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Algebraische Kurve |0 (DE-588)4001165-3 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Auflösung von Singularitäten |0 (DE-588)4181537-3 |D s |
689 | 0 | 1 | |a Algebraische Fläche |0 (DE-588)4195660-6 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
689 | 1 | 0 | |a Auflösung von Singularitäten |0 (DE-588)4181537-3 |D s |
689 | 1 | 1 | |a Algebraische Kurve |0 (DE-588)4001165-3 |D s |
689 | 1 | |8 2\p |5 DE-604 | |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |z 978-0-691-12922-8 |
830 | 0 | |a Annals of Mathematics Studies |v number 166 |w (DE-604)BV040389493 |9 166 | |
856 | 4 | 0 | |u https://doi.org/10.1515/9781400827800?locatt=mode:legacy |x Verlag |3 Volltext |
856 | 4 | 0 | |u http://www.degruyter.com/search?f_0=isbnissn&q_0=9781400827800&searchTitles=true |x Verlag |z URL des Erstveröffentlichers |3 Volltext |
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 2\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
912 | |a ZDB-23-DGG | ||
912 | |a ZDB-23-PST | ||
940 | 1 | |q FKE_PDA_DGG | |
940 | 1 | |q FLA_PDA_DGG | |
940 | 1 | |q UPA_PDA_DGG | |
940 | 1 | |q FAW_PDA_DGG | |
940 | 1 | |q FCO_PDA_DGG | |
943 | 1 | |a oai:aleph.bib-bvb.de:BVB01-027956720 |
Datensatz im Suchindex
_version_ | 1824508470662004736 |
---|---|
adam_text | |
any_adam_object | |
author | Kollár, János 1956- |
author_GND | (DE-588)113796277 |
author_facet | Kollár, János 1956- |
author_role | aut |
author_sort | Kollár, János 1956- |
author_variant | j k jk |
building | Verbundindex |
bvnumber | BV042522381 |
classification_rvk | SK 240 |
collection | ZDB-23-DGG ZDB-23-PST |
ctrlnum | (OCoLC)1165455548 (DE-599)BVBBV042522381 |
discipline | Mathematik |
doi_str_mv | 10.1515/9781400827800 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>00000nam a2200000 cb4500</leader><controlfield tag="001">BV042522381</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20200331</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">150423s2007 xx o|||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781400827800</subfield><subfield code="9">978-1-4008-2780-0</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1515/9781400827800</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1165455548</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV042522381</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-859</subfield><subfield code="a">DE-860</subfield><subfield code="a">DE-739</subfield><subfield code="a">DE-1046</subfield><subfield code="a">DE-83</subfield><subfield code="a">DE-1043</subfield><subfield code="a">DE-858</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 240</subfield><subfield code="0">(DE-625)143226:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Kollár, János</subfield><subfield code="d">1956-</subfield><subfield code="0">(DE-588)113796277</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Lectures on resolution of singularities</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Princeton, N.J.</subfield><subfield code="b">Princeton University Press</subfield><subfield code="c">[2007]</subfield></datafield><datafield tag="264" ind1=" " ind2="4"><subfield code="c">© 2007</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (208 S.)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Annals of Mathematics Studies</subfield><subfield code="v">number 166</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Main description: Resolution of singularities is a powerful and frequently used tool in algebraic geometry. In this book, János Kollár provides a comprehensive treatment of the characteristic 0 case. He describes more than a dozen proofs for curves, many based on the original papers of Newton, Riemann, and Noether. Kollár goes back to the original sources and presents them in a modern context. He addresses three methods for surfaces, and gives a self-contained and entirely elementary proof of a strong and functorial resolution in all dimensions. Based on a series of lectures at Princeton University and written in an informal yet lucid style, this book is aimed at readers who are interested in both the historical roots of the modern methods and in a simple and transparent proof of this important theorem</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Algebraische Fläche</subfield><subfield code="0">(DE-588)4195660-6</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Auflösung von Singularitäten</subfield><subfield code="0">(DE-588)4181537-3</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Algebraische Kurve</subfield><subfield code="0">(DE-588)4001165-3</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Auflösung von Singularitäten</subfield><subfield code="0">(DE-588)4181537-3</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Algebraische Fläche</subfield><subfield code="0">(DE-588)4195660-6</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Auflösung von Singularitäten</subfield><subfield code="0">(DE-588)4181537-3</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2="1"><subfield code="a">Algebraische Kurve</subfield><subfield code="0">(DE-588)4001165-3</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">978-0-691-12922-8</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">Annals of Mathematics Studies</subfield><subfield code="v">number 166</subfield><subfield code="w">(DE-604)BV040389493</subfield><subfield code="9">166</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1515/9781400827800?locatt=mode:legacy</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">http://www.degruyter.com/search?f_0=isbnissn&q_0=9781400827800&searchTitles=true</subfield><subfield code="x">Verlag</subfield><subfield code="z">URL des Erstveröffentlichers</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-23-DGG</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-23-PST</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">FKE_PDA_DGG</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">FLA_PDA_DGG</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">UPA_PDA_DGG</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">FAW_PDA_DGG</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">FCO_PDA_DGG</subfield></datafield><datafield tag="943" ind1="1" ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-027956720</subfield></datafield></record></collection> |
id | DE-604.BV042522381 |
illustrated | Not Illustrated |
indexdate | 2025-02-19T17:41:08Z |
institution | BVB |
isbn | 9781400827800 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-027956720 |
oclc_num | 1165455548 |
open_access_boolean | |
owner | DE-859 DE-860 DE-739 DE-1046 DE-83 DE-1043 DE-858 |
owner_facet | DE-859 DE-860 DE-739 DE-1046 DE-83 DE-1043 DE-858 |
physical | 1 Online-Ressource (208 S.) |
psigel | ZDB-23-DGG ZDB-23-PST FKE_PDA_DGG FLA_PDA_DGG UPA_PDA_DGG FAW_PDA_DGG FCO_PDA_DGG |
publishDate | 2007 |
publishDateSearch | 2007 |
publishDateSort | 2007 |
publisher | Princeton University Press |
record_format | marc |
series | Annals of Mathematics Studies |
series2 | Annals of Mathematics Studies |
spelling | Kollár, János 1956- (DE-588)113796277 aut Lectures on resolution of singularities Princeton, N.J. Princeton University Press [2007] © 2007 1 Online-Ressource (208 S.) txt rdacontent c rdamedia cr rdacarrier Annals of Mathematics Studies number 166 Main description: Resolution of singularities is a powerful and frequently used tool in algebraic geometry. In this book, János Kollár provides a comprehensive treatment of the characteristic 0 case. He describes more than a dozen proofs for curves, many based on the original papers of Newton, Riemann, and Noether. Kollár goes back to the original sources and presents them in a modern context. He addresses three methods for surfaces, and gives a self-contained and entirely elementary proof of a strong and functorial resolution in all dimensions. Based on a series of lectures at Princeton University and written in an informal yet lucid style, this book is aimed at readers who are interested in both the historical roots of the modern methods and in a simple and transparent proof of this important theorem Algebraische Fläche (DE-588)4195660-6 gnd rswk-swf Auflösung von Singularitäten (DE-588)4181537-3 gnd rswk-swf Algebraische Kurve (DE-588)4001165-3 gnd rswk-swf Auflösung von Singularitäten (DE-588)4181537-3 s Algebraische Fläche (DE-588)4195660-6 s 1\p DE-604 Algebraische Kurve (DE-588)4001165-3 s 2\p DE-604 Erscheint auch als Druck-Ausgabe 978-0-691-12922-8 Annals of Mathematics Studies number 166 (DE-604)BV040389493 166 https://doi.org/10.1515/9781400827800?locatt=mode:legacy Verlag Volltext http://www.degruyter.com/search?f_0=isbnissn&q_0=9781400827800&searchTitles=true Verlag URL des Erstveröffentlichers Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 2\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Kollár, János 1956- Lectures on resolution of singularities Annals of Mathematics Studies Algebraische Fläche (DE-588)4195660-6 gnd Auflösung von Singularitäten (DE-588)4181537-3 gnd Algebraische Kurve (DE-588)4001165-3 gnd |
subject_GND | (DE-588)4195660-6 (DE-588)4181537-3 (DE-588)4001165-3 |
title | Lectures on resolution of singularities |
title_auth | Lectures on resolution of singularities |
title_exact_search | Lectures on resolution of singularities |
title_full | Lectures on resolution of singularities |
title_fullStr | Lectures on resolution of singularities |
title_full_unstemmed | Lectures on resolution of singularities |
title_short | Lectures on resolution of singularities |
title_sort | lectures on resolution of singularities |
topic | Algebraische Fläche (DE-588)4195660-6 gnd Auflösung von Singularitäten (DE-588)4181537-3 gnd Algebraische Kurve (DE-588)4001165-3 gnd |
topic_facet | Algebraische Fläche Auflösung von Singularitäten Algebraische Kurve |
url | https://doi.org/10.1515/9781400827800?locatt=mode:legacy http://www.degruyter.com/search?f_0=isbnissn&q_0=9781400827800&searchTitles=true |
volume_link | (DE-604)BV040389493 |
work_keys_str_mv | AT kollarjanos lecturesonresolutionofsingularities |