Micro energy harvesting:
Gespeichert in:
Weitere Verfasser: | |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
Weinheim
Wiley-VCH
2015
|
Schriftenreihe: | Advanced micro & nanosystems
[12] |
Schlagworte: | |
Online-Zugang: | Inhaltstext Inhaltsverzeichnis |
Beschreibung: | XXII, 468 S. Ill., graph. Darst. |
ISBN: | 3527319026 9783527319022 9783527672943 |
Internformat
MARC
LEADER | 00000nam a22000008cb4500 | ||
---|---|---|---|
001 | BV042514728 | ||
003 | DE-604 | ||
005 | 20170518 | ||
007 | t | ||
008 | 150421s2015 gw ad|| |||| 00||| eng d | ||
015 | |a 14,N44 |2 dnb | ||
016 | 7 | |a 1059940140 |2 DE-101 | |
020 | |a 3527319026 |9 3-527-31902-6 | ||
020 | |a 9783527319022 |c Gb. : ca. EUR 139.00 (DE) (freier Pr.), ca. EUR 159.00 (DE) (freier Pr.), ca. EUR 139.00 (DE) (freier Sonderpreis: Preis bei Abn. d. Reihe), ca. EUR 142.90 (AT) (freier Pr.), ca. EUR 163.50 (AT) (freier Pr.), ca. sfr 187.00 (freier Pr.), ca. sfr 214.00 (freier Pr.) |9 978-3-527-31902-2 | ||
020 | |a 9783527672943 |c obook |9 978-3-527-67294-3 | ||
024 | 3 | |a 9783527319022 | |
028 | 5 | 2 | |a Best.-Nr.: 1131902 000 |
035 | |a (OCoLC)894135757 | ||
035 | |a (DE-599)DNB1059940140 | ||
040 | |a DE-604 |b ger |e rakddb | ||
041 | 0 | |a eng | |
044 | |a gw |c XA-DE-BW | ||
049 | |a DE-703 |a DE-M347 |a DE-11 |a DE-1043 |a DE-29T |a DE-573 |a DE-1050 |a DE-92 | ||
082 | 0 | |a 621.3121 |2 22/ger | |
084 | |a ZN 3750 |0 (DE-625)157334: |2 rvk | ||
084 | |a ZN 4900 |0 (DE-625)157417: |2 rvk | ||
084 | |a ZP 3700 |0 (DE-625)157967: |2 rvk | ||
084 | |a ZP 3780 |0 (DE-625)159895: |2 rvk | ||
084 | |a 621.3 |2 sdnb | ||
245 | 1 | 0 | |a Micro energy harvesting |c ed. by Danick Briand ... |
264 | 1 | |a Weinheim |b Wiley-VCH |c 2015 | |
300 | |a XXII, 468 S. |b Ill., graph. Darst. | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
490 | 1 | |a Advanced micro & nanosystems |v [12] | |
650 | 0 | 7 | |a Mikrosystemtechnik |0 (DE-588)4221617-5 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Energy Harvesting |0 (DE-588)7664612-9 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Nanotechnologie |0 (DE-588)4327470-5 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a MEMS |0 (DE-588)4824724-8 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Energy Harvesting |0 (DE-588)7664612-9 |D s |
689 | 0 | 1 | |a Mikrosystemtechnik |0 (DE-588)4221617-5 |D s |
689 | 0 | 2 | |a Nanotechnologie |0 (DE-588)4327470-5 |D s |
689 | 0 | 3 | |a MEMS |0 (DE-588)4824724-8 |D s |
689 | 0 | |5 DE-604 | |
700 | 1 | |a Briand, Danick |0 (DE-588)1070506133 |4 edt | |
776 | 0 | 8 | |i Erscheint auch als |n Online-Ausgabe, EPUB |z 978-3-527-67292-9 |
776 | 0 | 8 | |i Erscheint auch als |n Online-Ausgabe, MOBI |z 978-3-527-67291-2 |
776 | 0 | 8 | |i Erscheint auch als |n Online-Ausgabe, PDF |z 978-3-527-67293-6 |
830 | 0 | |a Advanced micro & nanosystems |v [12] |w (DE-604)BV019371555 |9 12 | |
856 | 4 | 2 | |m X:MVB |q text/html |u http://deposit.dnb.de/cgi-bin/dokserv?id=4809094&prov=M&dok_var=1&dok_ext=htm |3 Inhaltstext |
856 | 4 | 2 | |m HBZ Datenaustausch |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=027949187&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
943 | 1 | |a oai:aleph.bib-bvb.de:BVB01-027949187 |
Datensatz im Suchindex
_version_ | 1806331109375475712 |
---|---|
adam_text |
Titel: Micro energy harvesting
Autor: Briand, Danick
Jahr: 2015
Contents About the Volume Editors XVII List of Contributors XIX 1 Introduction to Micro Energy Harvesting 1 Danick Briand, Eric Yeatman, and Shad Roundy 1.1 Introduction to the Topic 1 1.2 Current Status and Trends 3 1.3 Book Content and Structure 4 2 Fundamentals of Mechanics and Dynamics 7 Helios Vocca and Luca Gammaitoni 2.1 Introduction 7 2.2 Strategies for Micro Vibration Energy Harvesting 8 2.2.1 Piezoelectric 9 2.2.2 Electromagnetic 10 2.2.3 Electrostatic 11 2.2.4 From Macro to Micro to Nano 11 2.3 Dynamical Models for Vibration Energy Harvesters 12 2.3.1 Stochastic Character of Ambient Vibrations 14 2.3.2 Linear Case 1: Piezoelectric Cantilever Generator 14 2.3.3 Linear Case 2: Electromagnetic Generator 15 2.3.4 Transfer Function 15 2.4 Beyond Linear Micro-Vibration Harvesting 16 2.4.1 Frequency Tuning 16 2.4.2 Multimodal Harvesting 17 2.4.3 Up-Conversion Techniques 17 2.5 Nonlinear Micro-Vibration Energy Harvesting 18 2.5.1 Bistable Oscillators: Cantilever 19 2.5.2 Bistable Oscillators: Buckled Beam 21 2.5.3 Monostable Oscillators 23 2.6 Conclusions 24 Acknowledgments 24 References 24
VI Contents 3 Electromechanical Transducers 27 Adrien Bade!, Fabien Formosa, and Mickaël Lallart 3.1 Introduction 27 3.2 Electromagnetic Transducers 27 3.2.1 Basic Principle 27 3.2.1.1 Induced Voltage 28 3.2.1.2 Self-Induction 28 3.2.1.3 Mechanical Aspect 29 3.2.2 Typical Architectures 30 3.2.2.1 Case Study 30 3.2.2.2 General Case 33 3.2.3 Energy Extraction Cycle 33 3.2.3.1 Resistive Cycle 34 3.2.3.2 Self-Inductance Cancelation 34 3.2.3.3 Cycle with Rectification 35 3.2.3.4 Active Cycle 36 3.2.4 Figures of Merit and Limitations 36 3.3 Piezoelectric Transducers 37 3.3.1 Basic Principles and Constitutive Equations 37 3.3.1.1 Physical Origin of Piezoelectricity in Ceramics and Crystals 37 3.3.1.2 Constitutive Equations 38 3.3.2 Typical Architectures for Energy Harvesting 39 3.3.2.1 Modeling 39 3.3.2.2 Application to Typical Configurations 40 3.3.3 Energy Extraction Cycles 41 3.3.3.1 Resistive Cycles 41 3.3.3.2 Cycles with Rectification 43 3.3.3.3 Active Cycles 43 3.3.3.4 Comparison 43 3.3.4 Maximal Power Density and Figure of Merit 44 3.4 Electrostatic Transducers 45 3.4.1 Basic Principles 45 3.4.1.1 Gauss’s Law 45 3.4.1.2 Capacitance C 0 45 3.4.1.3 Electric Potential 46 3.4.1.4 Energy 46 3.4.1.5 Force 47 3.4.2 Design Parameters for a Capacitor 47 3.4.2.1 Architecture 47 3.4.2.2 Dielectric 48 3.4.3 Energy Extraction Cycles 48 3.4.3.1 Charge-Constrained Cycle 49 3.4.3.2 Voltage-Constrained Cycle 50 3.4.3.3 Electret Cycle 51 3.4.4 Limits 51
Contents VII 3.4.4.1 3.4.4.2 3.4.4.3 3.5 3.5.1 3.5.1.1 3.5.1.2 3.5.2 3.5.2.1 3.5.2.2 3.6 3.7 4 4.1 4.2 4.2.1 4.2.2 4.3 4.3.1 4.3.2 4.3.3 4.3.4 4.4 5 5.1 5.2 5.2.1 5.2.2 5.2.3 5.2.4 5.2.5 5.2.6 5.2.7 5.2.7.1 Parasitic Capacitors 51 Breakdown Voltage 53 Pull-In Force 53 Other Electromechanical Transduction Principles 53 Electrostrictive Materials 53 Physical Origin and Constitutive Equations 53 Energy Harvesting Strategies 54 Magnetostrictive Materials 55 Physical Origin 55 Constitutive Equations 56 Effect of the Vibration Energy Harvester Mechanical Structure 56 Summary 58 References 59 Thermal Fundamentals 61 Mathieu Francoeur Introduction 61 Fundamentals of Thermoelectric Power Generation 62 Overview of Nanoscale Heat Conduction and the Seebeck Effect 62 Heat Transfer Analysis of Thermoelectric Power Generation 64 Near-Field Thermal Radiation and Thermophotovoltaic Power Generation 66 Introduction 66 Theoretical Framework: Fluctuational Electrodynamics 67 Introduction to Thermophotovoltaic Power Generation and Physics of Near-Field Radiative Heat Transfer between Two Bulk Materials Separated by a Subwavelength Vacuum Gap 70 Nanoscale-Gap Thermophotovoltaic Power Generation 76 Conclusions 80 Acknowledgments 80 References 81 Power Conditioning for Energy Harvesting - Theory and Architecture 85 Stephen G. Burrow and Paul D. Mitcheson Introduction 85 The Function of Power Conditioning 85 Interface to the Harvester 86 Circuits with Resistive Input Impedance 87 Circuits with Reactive Input Impedance 89 Circuits with Nonlinear Input Impedance 90 Peak Rectifiers 90 Piezoelectric Pre-biasing 92 Control 94 Voltage Regulation 94
VIM Contents 52 . 7.2 5.2.8 5.2.8.1 5.2.9 5.3 6 6.1 6.2 6 . 2.1 6 . 2.2 6.2.3 6.2.4 6.3 6.3.1 6.3.2 6.3.3 6.3.4 6.4 6.5 6.6 6.7 6.7.1 6.7.2 6.8 7 7.1 7.2 7.3 7.4 7.4.1 7.5 7.5.1 7.5.1.1 7.5.1.2 7.5.2 7.5.3 Peak Power Controllers 96 System Architectures 97 Start-Up 97 Highly Dynamic Load Power 98 Summary 100 References 100 Thermoelectric Materials for Energy Harvesting 103 Andrew C. Miner Introduction 103 Performance Considerations in Materials Selection: zT 103 Properties of Chalcogenides (Group 16) 106 Properties of Crystallogens (Group 14) 106 Properties of Pnictides (Group 15) 107 Properties of Skutterudites 108 Influence of Scale on Material Selection and Synthesis 110 Thermal Conductance Mismatch 111 Domination of Electrical Contact Resistances 112 Domination of Bypass Heat Flow 113 Challenges in Thermoelectric Property Measurement 113 Low Dimensionality: Internal Micro/Nanostructure and Related Approaches 114 Thermal Expansion and Its Role in Materials Selection 115 Raw Material Cost Considerations 116 Material Synthesis with Particular Relevance to Micro Energy Harvesting 116 Electroplating, Electrophoresis, Dielectrophoresis 117 Thin and Thick Film Deposition 118 Summary 118 References 119 Piezoelectric Materials for Energy Harvesting 123 Emmanuel De fay, Sébastien Boisseau, and Ghislain Despesse Introduction 123 What Is Piezoelectricity? 123 Thermodynamics: the Right Way to Describe Piezoelectricity 125 Material Figure of Merit: the Electromechanical Coupling Factor 126 Special Considerations for Energy Harvesting 128 Perovskite Materials 129 Structure 129 Ferroelectricity in Perovskites 129 Piezoelectricity in Perovskites: Poling Required 131 PZT Phase Diagram 131 Ceramics 132
7.5.3.1 Fabrication Process 132 7.5.3.2 Typical Examples for Energy Harvesting 134 7.5.4 Bulk Single Crystals 135 7.5.4.1 Perovskites 135 7.5.4.2 Energy Harvesting with Perovskites Bulk Single Crystals 135 7.5.5 Polycrystalline Perovskites Thin Films 136 7.5.5.1 Fabrication Processes 136 7.5.5.2 Energy Harvesting with Poly-PZT Films 136 7.5.6 Single-Crystal Thin Films 137 7.5.6.1 Fabrication Process 137 7.5.6.2 Energy Harvesting with SC Perovskite Films 137 7.5.7 Lead-Free 138 7.5.7.1 Energy Harvesting with Lead-Free Materials 139 7.6 Wurtzites 139 7.6.1 Structure 139 7.6.2 Thin Films and Energy Harvesting 140 7.6.3 Doping 141 in PVDFs 141 7.7.1 Structure 141 7.7.2 Synthesis 143 7.73 Energy Harvesters with PVDF 143 7.8 Nanomaterials 143 7.9 Typical Values for the Main Piezoelectric Materials 144 7.10 Summary 145 References 145 8 Electrostatic/Electret-Based Flarvesters 149 Yuji Suzuki 8.1 Introduction 149 8.2 Electrostatic/Electret Conversion Cycle 149 8.3 Electrostatic/Electret Generator Models 151 8.3.1 Configuration of Electrostatic/Electret Generator 151 8.3.2 Electrode Design for Electrostatic/Electret Generator 153 8.4 Electrostatic Generators 156 8.4.1 Design and Fabrication Methods 156 8.4.2 Generator Examples 158 8.5 Electrets and Electret Generator Model 160 8.5.1 Electrets 160 8.5.2 Electret Materials 161 8.5.3 Charging Technologies 162 8.5.4 Electret Generator Model 163 8.6 Electret Generators 168 8.7 Summary 171 References 171
X Contents 9 Electrodynamic Vibrational Energy Harvesting 175 Shuo Cheng, Clemens Cepnlk, and David P. Arnold 9.1 Introduction 175 9.2 Theoretical Background 178 9.2.1 Energy Storage, Dissipation, and Conversion 178 9.2.2 Electrodynamic Physics 179 9.2.2.1 Faraday’s Law 179 9.2.2.2 Lorentz Force 180 9.2.3 Simplified Electrodynamic Equations 180 9.3 Electrodynamic Harvester Architectures 181 9.4 Modeling and Optimization 183 9.4.1 Modeling 184 9.4.1.1 Lumped Element Method 184 9.4.1.2 Finite Element Method 188 9.4.1.3 Combination of Lumped Element Model and Finite Element Model 189 9.4.2 Optimization 190 9.5 Design and Fabrication 191 9.5.1 Design of Electrodynamic Harvesters 192 9.5.2 Fabrication of Electrodynamic Harvesters 194 9.6 Summary 196 References 197 10 Piezoelectric MEMS Energy Harvesters 201 Jae Yeong Park 10.1 Introduction 201 10.1.1 The General Governing Equation 202 10.1.2 Design Consideration 203 10.2 Development of Piezoelectric MEMS Energy Harvesters 204 10.2.1 Overview 204 10.2.2 Fabrication Technologies 205 10.2.3 Characterization 211 10.2.3.1 Frequency Response 211 10.2.3.2 Output Power of Piezoelectric MEMS Energy Harvesters 211 10.3 Challenging Issues in Piezoelectric MEMS Energy Harvesters 213 10.3.1 Output Power 213 10.3.2 Frequency Response 215 10.3.3 Piezoelectric Material 217 10.4 Summary 218 References 218 11 Vibration Energy Harvesting from Wideband and Time-Varying Frequencies 223 Lindsay M. Miller 11.1 Introduction 223
11.1.1 Motivation 223 11.1.2 Classification of Devices 223 11.1.3 General Comments 225 11.2 Active Schemes for Tunable Resonant Devices 225 11.2.1 Stiffness Modification for Frequency Tuning 226 11.2.1.1 Modify L 226 11.2.1.2 Modify £ 227 11.2.1.3 Modify/c eff Using Axial Force 227 11.2.1.4 Modify Ar eff Using an External Spring 229 11.2.1.5 Modify k eff Using an Electrical External Spring 231 11.2.2 Mass Modification for Frequency Tuning 232 11.3 Passive Schemes for Tunable Resonant Devices 232 11.3.1 Modify m e(f by Coupling Mass Position with Beam Excitation 233 11.3.2 Modify k efi by Coupling Axial Force with Centrifugal Force from Rotation 234 11.3.3 Modify L by Using Centrifugal Force to Toggle Beam Clamp Position 234 11.4 Wideband Devices 235 11.4.1 Multimodal Designs 236 11.4.2 Nonlinear Designs 237 11.5 Summary and Future Research Directions 240 11.5.1 Summary of Tunable and Wideband Strategies 240 11.5.2 Areas for Future Improvement in Tunable and Wideband Strategies 241 11.5.2.1 Tuning range and resolution 241 11.5.2.2 Tuning sensitivity to driving vibrations 242 11.5.2.3 System Size considerations 242 References 243 12 Micro Thermoelectric Generators 245 Ingo Stark 12.1 Introduction 245 12.2 Classification of Micro Thermoelectric Generators 247 12.3 General Considerations for MicroTEGs 250 12.4 Micro Device Technologies 252 12.4.1 Research and Development 253 12.4.1.1 Electrodeposition 253 12.4.1.2 Silicon-MEMS Technology 253 12.4.1.3 CMOS-MEMS Technology 254 12.4.1.4 Other 255 12.4.2 Commercialized Micro Technologies 257 12.4.2.1 Micropelt Technology 257 12.4.2.2 Nextreme/Laird Technology 258 12.4.2.3 Thermogen Technology 259 12.5 Applications of Complete Systems 260
XII Contents 12.5.1 Energy- Autonomous Sensor for Air Flow Temperature 261 12.5.2 Wireless Pulse Oximeter Sp02 Sensor 261 12.5.3 Intelligent Thermostatic Radiator Valve (iTRV) 262 12.5.4 Wireless Power Generator Evaluation Kit 263 12.5.5 Jacket-Integrated Wireless Temperature Sensor 263 12.6 Summary 264 References 265 13 Micromachined Acoustic Energy Harvesters 271 Stephen Horowitz and Mark Sheplak 13.1 Introduction 271 13.2 Historical Overview 272 13.2.1 A Brief History 272 13.2.2 Survey of Reported Performance 274 13.3 Acoustics Background 276 13.3.1 Principles and Concepts 276 13.3.2 Fundamentals of Acoustics 276 13.3.3 Challenges of Acoustic Energy Harvesting 277 13.4 Electroacoustic Transduction 277 13.4.1 Modeling 278 13.4.1.1 Lumped Element Modeling (LEM) 278 13.4.1.2 Equivalent Circuits 279 13.4.1.3 Transduction 280 13.4.1.4 Numerical Approaches 281 13.4.2 Impedance Matching and Energy Focusing 281 13.4.3 Transduction Methods 281 13.4.3.1 Piezoelectric Transduction 281 13.4.3.2 Electromagnetic Transduction 282 13.4.3.3 Electrostatic Transduction 282 13.4.3.4 Comparative Analysis 283 13.4.4 Transduction Structures 284 13.4.4.1 Structures for Impedance Matching 284 13.4.4.2 Structures for Acoustical to Mechanical Transduction 286 13.5 Fabrication Methods 288 13.5.1 Materials 288 13.5.2 Processes 289 13.6 Testing and Characterization 289 13.7 Summary 290 Acknowledgments 290 References 290 14 Energy Harvesting from Fluid Flows 297 Andrew S. Holmes 14.1 Introduction 297 14.2 Fundamental and Practical Limits 298
Contents XIII 14.3 Miniature Wind Turbines 301 14.3.1 Scaling Effects in Miniature Wind Turbines 302 14.3.1.1 Turbine Performance 302 14.3.1.2 Generator and Bearing Losses 305 14.4 Energy Harvesters Based on Flow Instability 306 14.4.1 Vortex Shedding Devices 307 14.4.2 Devices Based on Galloping and Flutter 310 14.5 Performance Comparison 316 14.6 Summary 317 References 317 15 Far-Field RF Energy Transfer and Harvesting 321 HubregtJ. Visser and Ruud Vullers 15.1 Introduction 321 15.2 Nonradiative and Radiative (Far-Field) RF Energy Transfer 322 15.2.1 Nonradiative Transfer 322 15.2.2 Radiative Transfer 323 15.2.3 Harvesting versus Transfer 324 15.3 Receiving Rectifying Antenna 326 15.3.1 Antenna-Rectifier Matching 326 15.3.1.1 Voltage Boosting Technique 327 15.3.1.2 Antenna Matched to Rectifier 328 15.3.1.3 Antenna Not Matched to the Rectifier/Multiplier 329 15.3.1.4 Consequences for the Rectifier and the Antenna Design 330 15.4 Rectifier 330 15.4.1 RF Input Impedance 331 15.4.2 DC Output Voltage 332 15.4.3 Antenna 334 15.4.3.1 50 Q. Antenna 335 15.4.3.2 Complex Conjugately Matched Antenna 335 15.4.4 Rectenna Results 336 15.4.5 Voltage Up-Conversion 339 15.5 Transmission 340 15.6 Examples and Future Perspectives 341 15.7 Conclusions 344 References 344 16 Microfabricated Microbial Fuel Cells 347 Hao Ren and JunseokChae 16.1 Introduction 347 16.2 Fundamentals of MEMS MFC 348 16.2.1 Operation Principle 348 16.2.1.1 Structure 348 16.2.1.2 Materials 350 16.2.2 Critical Parameters for Testing 350
XIV Contents 16.2.2.1 Anode and Cathode Potential, the Total Cell Potential 350 16.2.2.2 Open Circuit Voltage (E ocv ) 351 16.2.2.3 Areal/Volumetric Current Density and Areal/Volumetric Power Density 351 16.2.2.4 Internal Resistance and Areal Resistivity 352 16.2.2.5 Efficiency 353 16.3 Prior Art MEMS MFCS 354 16.4 Future Work 355 16.4.1 Reducing Areal Resistivity 355 16.4.1.1 Applying Materials with High Surface-Area-to-Volume Ratio 355 16.4.1.2 Mitigating Oxygen Intrusion 358 16.4.2 Autonomous Running 359 16.4.3 Elucidating the EET Mechanism 359 References 359 17 Micro Photovoltaic Module Energy Harvesting 363 Shunpu Li,Wensi Wang, Ningning Wang, Gan O'Mathuna, andSaibalRoy 17.1 Introduction 363 17.1.1 p-n Junction and Crystalline Si Solar Cells 363 17.1.2 Amorphous Silicon Solar Cell 366 17.1.3 CIGS and CdTe Solar Cell Development 367 17.1.4 Polymer Solar Cell 370 17.1.5 Dye-Sensitized Solar Cells (DSSC) 373 17.2 Monolithically Integration of Solar Cells with IC 375 17.3 Low-Power Micro Photovoltaic Systems 376 17.3.1 Maximum Power Point Tracking 376 17.3.2 Output Voltage Regulation 379 17.3.3 Indoor-Light-Powered Wireless Sensor Networks - a Case Study 380 17.4 Summary 382 References 383 18 Power Conditioning for Energy Harvesting - Case Studies and Commercial Products 385 Paul D. Mitcheson and Stephen G. Burrow 18.1 Introduction 385 18.2 Submilliwatt Electromagnetic Harvester Circuit Example 386 18.3 Single-Supply Pre-biasing for Piezoelectric Harvesters 388 18.4 Ultra-Low-Power Rectifier and MPPT for Thermoelectric Harvesters 392 18.5 Frequency Tuning of an Electromagnetic Harvester 393 18.6 Examples of Converters for Ultra-Low-Output Transducers 396 18.7 Power Processing for Electrostatic Devices 397 18.8 Commercial Products 397
Contents XV 18.9 Conclusions 398 References 399 19 Micro Energy Storage: Considerations 401 Dan Steingart 19.1 Introduction 401 19.2 Boundary Conditions 401 19.2.1 Microbatteries 404 19.2.2 Supercapacitors 405 19.3 Primary Energy Storage Approaches 405 19.3.1 Volume-Constrained versus Conformally Demanding Approaches 408 19.3.2 Caveat Emptor 409 19.3.3 Future Work and First-Order Problems 409 References 410 20 Thermoelectric Energy Harvesting in Aircraft 415 Thomas Becker, Alexandras Elefsiniotis, and Michail E. Kiziroglou 20.1 Introduction 415 20.2 Aircraft Standardization 416 20.3 Autonomous Wireless Sensor Systems 417 20.4 Thermoelectric Energy Harvesting in Aircraft 419 20.4.1 Efficiency of a Thermoelectric Energy Harvesting Device 420 20.4.2 Static Thermoelectric Energy Harvester 421 20.4.3 Dynamic Thermoelectric Energy Harvester 423 20.5 Design Considerations 425 20.6 Applications 427 20.6.1 Static Thermoelectric Harvester for Aircraft Seat Sensors 427 20.6.2 The Dynamic Thermoelectric Harvesting Prototype 428 20.6.3 Heat Storage Thermoelectric Harvester for Aircraft Strain Sensors 428 20.6.4 Outlook 430 20.7 Conclusions 432 References 433 21 Powering Pacemakers with Heartbeat Vibrations 435 M. Amin Karaml and Daniel J. Inman 21.1 Introduction 435 21.2 Design Specifications 436 21.3 Estimation of Heartbeat Oscillations 437 21.4 Linear Energy Harvesters 438 21.5 Monostable Nonlinear Harvesters 441 21.6 Bistable Harvesters 446 21.7 Experimental Investigations 450 21.8 Heart Motion Characterization 450
XVI I Contents 21.9 Conclusions 456 Acknowledgment 457 References 457 Index 459 |
any_adam_object | 1 |
author2 | Briand, Danick |
author2_role | edt |
author2_variant | d b db |
author_GND | (DE-588)1070506133 |
author_facet | Briand, Danick |
building | Verbundindex |
bvnumber | BV042514728 |
classification_rvk | ZN 3750 ZN 4900 ZP 3700 ZP 3780 |
ctrlnum | (OCoLC)894135757 (DE-599)DNB1059940140 |
dewey-full | 621.3121 |
dewey-hundreds | 600 - Technology (Applied sciences) |
dewey-ones | 621 - Applied physics |
dewey-raw | 621.3121 |
dewey-search | 621.3121 |
dewey-sort | 3621.3121 |
dewey-tens | 620 - Engineering and allied operations |
discipline | Elektrotechnik / Elektronik / Nachrichtentechnik Energietechnik |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>00000nam a22000008cb4500</leader><controlfield tag="001">BV042514728</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20170518</controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">150421s2015 gw ad|| |||| 00||| eng d</controlfield><datafield tag="015" ind1=" " ind2=" "><subfield code="a">14,N44</subfield><subfield code="2">dnb</subfield></datafield><datafield tag="016" ind1="7" ind2=" "><subfield code="a">1059940140</subfield><subfield code="2">DE-101</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">3527319026</subfield><subfield code="9">3-527-31902-6</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783527319022</subfield><subfield code="c">Gb. : ca. EUR 139.00 (DE) (freier Pr.), ca. EUR 159.00 (DE) (freier Pr.), ca. EUR 139.00 (DE) (freier Sonderpreis: Preis bei Abn. d. Reihe), ca. EUR 142.90 (AT) (freier Pr.), ca. EUR 163.50 (AT) (freier Pr.), ca. sfr 187.00 (freier Pr.), ca. sfr 214.00 (freier Pr.)</subfield><subfield code="9">978-3-527-31902-2</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783527672943</subfield><subfield code="c">obook</subfield><subfield code="9">978-3-527-67294-3</subfield></datafield><datafield tag="024" ind1="3" ind2=" "><subfield code="a">9783527319022</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">Best.-Nr.: 1131902 000</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)894135757</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DNB1059940140</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rakddb</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="044" ind1=" " ind2=" "><subfield code="a">gw</subfield><subfield code="c">XA-DE-BW</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-703</subfield><subfield code="a">DE-M347</subfield><subfield code="a">DE-11</subfield><subfield code="a">DE-1043</subfield><subfield code="a">DE-29T</subfield><subfield code="a">DE-573</subfield><subfield code="a">DE-1050</subfield><subfield code="a">DE-92</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">621.3121</subfield><subfield code="2">22/ger</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">ZN 3750</subfield><subfield code="0">(DE-625)157334:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">ZN 4900</subfield><subfield code="0">(DE-625)157417:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">ZP 3700</subfield><subfield code="0">(DE-625)157967:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">ZP 3780</subfield><subfield code="0">(DE-625)159895:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">621.3</subfield><subfield code="2">sdnb</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Micro energy harvesting</subfield><subfield code="c">ed. by Danick Briand ...</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Weinheim</subfield><subfield code="b">Wiley-VCH</subfield><subfield code="c">2015</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">XXII, 468 S.</subfield><subfield code="b">Ill., graph. Darst.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Advanced micro & nanosystems</subfield><subfield code="v">[12]</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Mikrosystemtechnik</subfield><subfield code="0">(DE-588)4221617-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Energy Harvesting</subfield><subfield code="0">(DE-588)7664612-9</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Nanotechnologie</subfield><subfield code="0">(DE-588)4327470-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">MEMS</subfield><subfield code="0">(DE-588)4824724-8</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Energy Harvesting</subfield><subfield code="0">(DE-588)7664612-9</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Mikrosystemtechnik</subfield><subfield code="0">(DE-588)4221617-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="2"><subfield code="a">Nanotechnologie</subfield><subfield code="0">(DE-588)4327470-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="3"><subfield code="a">MEMS</subfield><subfield code="0">(DE-588)4824724-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Briand, Danick</subfield><subfield code="0">(DE-588)1070506133</subfield><subfield code="4">edt</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Online-Ausgabe, EPUB</subfield><subfield code="z">978-3-527-67292-9</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Online-Ausgabe, MOBI</subfield><subfield code="z">978-3-527-67291-2</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Online-Ausgabe, PDF</subfield><subfield code="z">978-3-527-67293-6</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">Advanced micro & nanosystems</subfield><subfield code="v">[12]</subfield><subfield code="w">(DE-604)BV019371555</subfield><subfield code="9">12</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">X:MVB</subfield><subfield code="q">text/html</subfield><subfield code="u">http://deposit.dnb.de/cgi-bin/dokserv?id=4809094&prov=M&dok_var=1&dok_ext=htm</subfield><subfield code="3">Inhaltstext</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">HBZ Datenaustausch</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=027949187&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="943" ind1="1" ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-027949187</subfield></datafield></record></collection> |
id | DE-604.BV042514728 |
illustrated | Illustrated |
indexdate | 2024-08-03T02:19:44Z |
institution | BVB |
isbn | 3527319026 9783527319022 9783527672943 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-027949187 |
oclc_num | 894135757 |
open_access_boolean | |
owner | DE-703 DE-M347 DE-11 DE-1043 DE-29T DE-573 DE-1050 DE-92 |
owner_facet | DE-703 DE-M347 DE-11 DE-1043 DE-29T DE-573 DE-1050 DE-92 |
physical | XXII, 468 S. Ill., graph. Darst. |
publishDate | 2015 |
publishDateSearch | 2015 |
publishDateSort | 2015 |
publisher | Wiley-VCH |
record_format | marc |
series | Advanced micro & nanosystems |
series2 | Advanced micro & nanosystems |
spelling | Micro energy harvesting ed. by Danick Briand ... Weinheim Wiley-VCH 2015 XXII, 468 S. Ill., graph. Darst. txt rdacontent n rdamedia nc rdacarrier Advanced micro & nanosystems [12] Mikrosystemtechnik (DE-588)4221617-5 gnd rswk-swf Energy Harvesting (DE-588)7664612-9 gnd rswk-swf Nanotechnologie (DE-588)4327470-5 gnd rswk-swf MEMS (DE-588)4824724-8 gnd rswk-swf Energy Harvesting (DE-588)7664612-9 s Mikrosystemtechnik (DE-588)4221617-5 s Nanotechnologie (DE-588)4327470-5 s MEMS (DE-588)4824724-8 s DE-604 Briand, Danick (DE-588)1070506133 edt Erscheint auch als Online-Ausgabe, EPUB 978-3-527-67292-9 Erscheint auch als Online-Ausgabe, MOBI 978-3-527-67291-2 Erscheint auch als Online-Ausgabe, PDF 978-3-527-67293-6 Advanced micro & nanosystems [12] (DE-604)BV019371555 12 X:MVB text/html http://deposit.dnb.de/cgi-bin/dokserv?id=4809094&prov=M&dok_var=1&dok_ext=htm Inhaltstext HBZ Datenaustausch application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=027949187&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis |
spellingShingle | Micro energy harvesting Advanced micro & nanosystems Mikrosystemtechnik (DE-588)4221617-5 gnd Energy Harvesting (DE-588)7664612-9 gnd Nanotechnologie (DE-588)4327470-5 gnd MEMS (DE-588)4824724-8 gnd |
subject_GND | (DE-588)4221617-5 (DE-588)7664612-9 (DE-588)4327470-5 (DE-588)4824724-8 |
title | Micro energy harvesting |
title_auth | Micro energy harvesting |
title_exact_search | Micro energy harvesting |
title_full | Micro energy harvesting ed. by Danick Briand ... |
title_fullStr | Micro energy harvesting ed. by Danick Briand ... |
title_full_unstemmed | Micro energy harvesting ed. by Danick Briand ... |
title_short | Micro energy harvesting |
title_sort | micro energy harvesting |
topic | Mikrosystemtechnik (DE-588)4221617-5 gnd Energy Harvesting (DE-588)7664612-9 gnd Nanotechnologie (DE-588)4327470-5 gnd MEMS (DE-588)4824724-8 gnd |
topic_facet | Mikrosystemtechnik Energy Harvesting Nanotechnologie MEMS |
url | http://deposit.dnb.de/cgi-bin/dokserv?id=4809094&prov=M&dok_var=1&dok_ext=htm http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=027949187&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
volume_link | (DE-604)BV019371555 |
work_keys_str_mv | AT brianddanick microenergyharvesting |