Nonlinear functional analysis and its applications: 2,B Nonlinear Monotone Operators
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
New York, NY [u.a.]
Springer
1990
|
Schlagworte: | |
Online-Zugang: | Volltext |
Beschreibung: | This is the second of a five-volume exposition of the main principles of nonlinear functional analysis and its applications to the natural sciences, economics, and numerical analysis. The presentation is self -contained and accessible to the nonspecialist. Part II concerns the theory of monotone operators. It is divided into two subvolumes, II/A and II/B, which form a unit. The present Part II/A is devoted to linear monotone operators. It serves as an elementary introduction to the modern functional analytic treatment of variational problems, integral equations, and partial differential equations of elliptic, parabolic and hyperbolic type. This book also represents an introduction to numerical functional analysis with applications to the Ritz method along with the method of finite elements, the Galerkin methods, and the difference method. Many exercises complement the text. The theory of monotone operators is closely related to Hilbert's rigorous justification of the Dirichlet principle, and to the 19th and 20th problems of Hilbert which he formulated in his famous Paris lecture in 1900, and which strongly influenced the development of analysis in the twentieth century |
Beschreibung: | 1 Online-Ressource (XV S., S. 469 - 1202) Ill. |
ISBN: | 9781461209812 9781461269694 |
DOI: | 10.1007/978-1-4612-0981-2 |
Internformat
MARC
LEADER | 00000nmm a2200000 cc4500 | ||
---|---|---|---|
001 | BV042507412 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 150416s1990 |||| o||u| ||||||eng d | ||
020 | |a 9781461209812 |c Online |9 978-1-4612-0981-2 | ||
020 | |a 9781461269694 |c Print |9 978-1-4612-6969-4 | ||
024 | 7 | |a 10.1007/978-1-4612-0981-2 |2 doi | |
035 | |a (OCoLC)908197311 | ||
035 | |a (DE-599)BVBBV042507412 | ||
040 | |a DE-604 |b ger |e rakwb | ||
041 | 0 | |a eng | |
049 | |a DE-384 |a DE-703 |a DE-91 |a DE-634 | ||
082 | 0 | |a 515 |2 23 | |
084 | |a MAT 000 |2 stub | ||
100 | 1 | |a Zeidler, Eberhard |d 1940-2016 |e Verfasser |0 (DE-588)121295869 |4 aut | |
240 | 1 | 0 | |a Vorlesungen über nichtlineare Funktionalanalysis |
245 | 1 | 0 | |a Nonlinear functional analysis and its applications |n 2,B |p Nonlinear Monotone Operators |c Eberhard Zeidler |
264 | 1 | |a New York, NY [u.a.] |b Springer |c 1990 | |
300 | |a 1 Online-Ressource (XV S., S. 469 - 1202) |b Ill. | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
500 | |a This is the second of a five-volume exposition of the main principles of nonlinear functional analysis and its applications to the natural sciences, economics, and numerical analysis. The presentation is self -contained and accessible to the nonspecialist. Part II concerns the theory of monotone operators. It is divided into two subvolumes, II/A and II/B, which form a unit. The present Part II/A is devoted to linear monotone operators. It serves as an elementary introduction to the modern functional analytic treatment of variational problems, integral equations, and partial differential equations of elliptic, parabolic and hyperbolic type. This book also represents an introduction to numerical functional analysis with applications to the Ritz method along with the method of finite elements, the Galerkin methods, and the difference method. Many exercises complement the text. The theory of monotone operators is closely related to Hilbert's rigorous justification of the Dirichlet principle, and to the 19th and 20th problems of Hilbert which he formulated in his famous Paris lecture in 1900, and which strongly influenced the development of analysis in the twentieth century | ||
650 | 4 | |a Mathematics | |
650 | 4 | |a Global analysis (Mathematics) | |
650 | 4 | |a Analysis | |
650 | 4 | |a Mathematik | |
773 | 0 | 8 | |w (DE-604)BV042507225 |g 2,2 |
856 | 4 | 0 | |u https://doi.org/10.1007/978-1-4612-0981-2 |x Verlag |3 Volltext |
912 | |a ZDB-2-SMA |a ZDB-2-BAE | ||
940 | 1 | |q ZDB-2-SMA_Archive | |
999 | |a oai:aleph.bib-bvb.de:BVB01-027942000 |
Datensatz im Suchindex
_version_ | 1804153250337783808 |
---|---|
any_adam_object | |
author | Zeidler, Eberhard 1940-2016 |
author_GND | (DE-588)121295869 |
author_facet | Zeidler, Eberhard 1940-2016 |
author_role | aut |
author_sort | Zeidler, Eberhard 1940-2016 |
author_variant | e z ez |
building | Verbundindex |
bvnumber | BV042507412 |
classification_tum | MAT 000 |
collection | ZDB-2-SMA ZDB-2-BAE |
ctrlnum | (OCoLC)908197311 (DE-599)BVBBV042507412 |
dewey-full | 515 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 515 - Analysis |
dewey-raw | 515 |
dewey-search | 515 |
dewey-sort | 3515 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
doi_str_mv | 10.1007/978-1-4612-0981-2 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02609nmm a2200421 cc4500</leader><controlfield tag="001">BV042507412</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">150416s1990 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781461209812</subfield><subfield code="c">Online</subfield><subfield code="9">978-1-4612-0981-2</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781461269694</subfield><subfield code="c">Print</subfield><subfield code="9">978-1-4612-6969-4</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/978-1-4612-0981-2</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)908197311</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV042507412</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-384</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-91</subfield><subfield code="a">DE-634</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">515</subfield><subfield code="2">23</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 000</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Zeidler, Eberhard</subfield><subfield code="d">1940-2016</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)121295869</subfield><subfield code="4">aut</subfield></datafield><datafield tag="240" ind1="1" ind2="0"><subfield code="a">Vorlesungen über nichtlineare Funktionalanalysis</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Nonlinear functional analysis and its applications</subfield><subfield code="n">2,B</subfield><subfield code="p">Nonlinear Monotone Operators</subfield><subfield code="c">Eberhard Zeidler</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">New York, NY [u.a.]</subfield><subfield code="b">Springer</subfield><subfield code="c">1990</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (XV S., S. 469 - 1202)</subfield><subfield code="b">Ill.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">This is the second of a five-volume exposition of the main principles of nonlinear functional analysis and its applications to the natural sciences, economics, and numerical analysis. The presentation is self -contained and accessible to the nonspecialist. Part II concerns the theory of monotone operators. It is divided into two subvolumes, II/A and II/B, which form a unit. The present Part II/A is devoted to linear monotone operators. It serves as an elementary introduction to the modern functional analytic treatment of variational problems, integral equations, and partial differential equations of elliptic, parabolic and hyperbolic type. This book also represents an introduction to numerical functional analysis with applications to the Ritz method along with the method of finite elements, the Galerkin methods, and the difference method. Many exercises complement the text. The theory of monotone operators is closely related to Hilbert's rigorous justification of the Dirichlet principle, and to the 19th and 20th problems of Hilbert which he formulated in his famous Paris lecture in 1900, and which strongly influenced the development of analysis in the twentieth century</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Global analysis (Mathematics)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Analysis</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematik</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="w">(DE-604)BV042507225</subfield><subfield code="g">2,2</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1007/978-1-4612-0981-2</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-2-SMA</subfield><subfield code="a">ZDB-2-BAE</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">ZDB-2-SMA_Archive</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-027942000</subfield></datafield></record></collection> |
id | DE-604.BV042507412 |
illustrated | Illustrated |
indexdate | 2024-07-10T01:23:37Z |
institution | BVB |
isbn | 9781461209812 9781461269694 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-027942000 |
oclc_num | 908197311 |
open_access_boolean | |
owner | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
owner_facet | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
physical | 1 Online-Ressource (XV S., S. 469 - 1202) Ill. |
psigel | ZDB-2-SMA ZDB-2-BAE ZDB-2-SMA_Archive |
publishDate | 1990 |
publishDateSearch | 1990 |
publishDateSort | 1990 |
publisher | Springer |
record_format | marc |
spelling | Zeidler, Eberhard 1940-2016 Verfasser (DE-588)121295869 aut Vorlesungen über nichtlineare Funktionalanalysis Nonlinear functional analysis and its applications 2,B Nonlinear Monotone Operators Eberhard Zeidler New York, NY [u.a.] Springer 1990 1 Online-Ressource (XV S., S. 469 - 1202) Ill. txt rdacontent c rdamedia cr rdacarrier This is the second of a five-volume exposition of the main principles of nonlinear functional analysis and its applications to the natural sciences, economics, and numerical analysis. The presentation is self -contained and accessible to the nonspecialist. Part II concerns the theory of monotone operators. It is divided into two subvolumes, II/A and II/B, which form a unit. The present Part II/A is devoted to linear monotone operators. It serves as an elementary introduction to the modern functional analytic treatment of variational problems, integral equations, and partial differential equations of elliptic, parabolic and hyperbolic type. This book also represents an introduction to numerical functional analysis with applications to the Ritz method along with the method of finite elements, the Galerkin methods, and the difference method. Many exercises complement the text. The theory of monotone operators is closely related to Hilbert's rigorous justification of the Dirichlet principle, and to the 19th and 20th problems of Hilbert which he formulated in his famous Paris lecture in 1900, and which strongly influenced the development of analysis in the twentieth century Mathematics Global analysis (Mathematics) Analysis Mathematik (DE-604)BV042507225 2,2 https://doi.org/10.1007/978-1-4612-0981-2 Verlag Volltext |
spellingShingle | Zeidler, Eberhard 1940-2016 Nonlinear functional analysis and its applications Mathematics Global analysis (Mathematics) Analysis Mathematik |
title | Nonlinear functional analysis and its applications |
title_alt | Vorlesungen über nichtlineare Funktionalanalysis |
title_auth | Nonlinear functional analysis and its applications |
title_exact_search | Nonlinear functional analysis and its applications |
title_full | Nonlinear functional analysis and its applications 2,B Nonlinear Monotone Operators Eberhard Zeidler |
title_fullStr | Nonlinear functional analysis and its applications 2,B Nonlinear Monotone Operators Eberhard Zeidler |
title_full_unstemmed | Nonlinear functional analysis and its applications 2,B Nonlinear Monotone Operators Eberhard Zeidler |
title_short | Nonlinear functional analysis and its applications |
title_sort | nonlinear functional analysis and its applications nonlinear monotone operators |
topic | Mathematics Global analysis (Mathematics) Analysis Mathematik |
topic_facet | Mathematics Global analysis (Mathematics) Analysis Mathematik |
url | https://doi.org/10.1007/978-1-4612-0981-2 |
volume_link | (DE-604)BV042507225 |
work_keys_str_mv | AT zeidlereberhard vorlesungenubernichtlinearefunktionalanalysis AT zeidlereberhard nonlinearfunctionalanalysisanditsapplications2b |