The art of electronics:
Gespeichert in:
Hauptverfasser: | , |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
New York, NY
Cambridge University Press
2015
|
Ausgabe: | Third edition |
Schlagworte: | |
Online-Zugang: | Ausführliche Beschreibung Inhaltsverzeichnis |
Beschreibung: | Literaturverzeichnis: Seite 1154 - 1157 ; Hier auch später erschienene, unveränderte Nachdrucke |
Beschreibung: | xxxi, 1230 Seiten Illustrationen, Diagramme 26 cm |
ISBN: | 9780521809269 |
Internformat
MARC
LEADER | 00000nam a2200000 c 4500 | ||
---|---|---|---|
001 | BV042487132 | ||
003 | DE-604 | ||
005 | 20210820 | ||
007 | t | ||
008 | 150408s2015 a||| |||| 00||| eng d | ||
010 | |a 2015002303 | ||
020 | |a 9780521809269 |c hbk. : ca. 87.30 EUR (DE), £ 59.99 |9 978-0-521-80926-9 | ||
020 | |a 9780521809269 |9 978-0-521-80926-9 | ||
035 | |a (OCoLC)255584150 | ||
035 | |a (DE-599)BVBBV042487132 | ||
040 | |a DE-604 |b ger |e rakwb | ||
041 | 0 | |a eng | |
049 | |a DE-B768 |a DE-573 |a DE-91G |a DE-634 |a DE-898 |a DE-Aug4 |a DE-523 |a DE-92 |a DE-11 |a DE-19 |a DE-522 |a DE-29T |a DE-M347 |a DE-860 |a DE-859 |a DE-83 |a DE-210 |a DE-861 |a DE-355 |a DE-1050 |a DE-1047 |a DE-B170 |a DE-858 |a DE-706 |a DE-862 |a DE-20 |a DE-703 |a DE-188 |a DE-91 |a DE-1046 | ||
050 | 0 | |a TK7870 | |
050 | 0 | |a TK7815 .H67 2015 | |
082 | 0 | |a 621.381 | |
082 | 0 | |a 621.381/32 | |
084 | |a ZN 5400 |0 (DE-625)157454: |2 rvk | ||
084 | |a ZN 4000 |0 (DE-625)157336: |2 rvk | ||
084 | |a UX 2200 |0 (DE-625)146949: |2 rvk | ||
084 | |a AP 18100 |0 (DE-625)7040: |2 rvk | ||
084 | |a ELT 230f |2 stub | ||
100 | 1 | |a Horowitz, Paul |d 1942- |e Verfasser |0 (DE-588)1074038940 |4 aut | |
245 | 1 | 0 | |a The art of electronics |c Paul Horowitz (Havard University), Winfield Hill (Rowland Institute at Havard) |
250 | |a Third edition | ||
264 | 1 | |a New York, NY |b Cambridge University Press |c 2015 | |
300 | |a xxxi, 1230 Seiten |b Illustrationen, Diagramme |c 26 cm | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
500 | |a Literaturverzeichnis: Seite 1154 - 1157 ; Hier auch später erschienene, unveränderte Nachdrucke | ||
650 | 4 | |a Electronics | |
650 | 4 | |a Electronic circuit design | |
650 | 0 | 7 | |a Elektroakustik |0 (DE-588)4014234-6 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Elektronik |0 (DE-588)4014346-6 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Elektronische Schaltung |0 (DE-588)4113419-9 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Elektronische Schaltung |0 (DE-588)4113419-9 |D s |
689 | 0 | |5 DE-604 | |
689 | 1 | 0 | |a Elektronik |0 (DE-588)4014346-6 |D s |
689 | 1 | |5 DE-604 | |
689 | 2 | 0 | |a Elektroakustik |0 (DE-588)4014234-6 |D s |
689 | 2 | |8 1\p |5 DE-604 | |
700 | 1 | |a Hill, Winfield |e Verfasser |0 (DE-588)107403936X |4 aut | |
775 | 0 | 8 | |i Parallele Sprachausgabe |n deutsch |t Die hohe Schule der Elektronik |w (DE-604)BV010909445 |
787 | 0 | 8 | |i Ergänzung |a Hayer, Thomas C. |t Learning the art of electronics - a hands-on lab course |
856 | 4 | 2 | |q text/html |u http://www.cambridge.org/de/academic/subjects/physics/electronics-physicists/art-electronics-3rd-edition?format=HB |3 Ausführliche Beschreibung |
856 | 4 | 2 | |m HBZ Datenaustausch |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=027921991&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
999 | |a oai:aleph.bib-bvb.de:BVB01-027921991 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk |
Datensatz im Suchindex
DE-BY-862_location | 2000 |
---|---|
DE-BY-FWS_call_number | 2000/ZN 4000 H816(3) |
DE-BY-FWS_katkey | 627453 |
DE-BY-FWS_media_number | 083000519997 |
_version_ | 1824553902692892673 |
adam_text | Titel: The art of electronics
Autor: Horowitz, Paul
Jahr: 2015
CONTENTS
List of Tables xxii 1.6.5 Regulators 34
1.6.6 Circuit applications of diodes 35
Preface to the First Edition XXV 1.6.7 Inductive loads and diode
protection 38
Preface to the Second Edition xxvii 1.6.8 Interlude: inductors as friends 39
1.7 Impedance and reactance 40
Preface to the Third Edition xxix 1.7.1 Frequency analysis of reactive
circuits 41
ONE: Foundations 1 1.7.2 Reactance of inductors 44
1.1 Introduction 1 1.7.3 Voltages and currents as
1.2 Voltage, current, and resistance 1 complex numbers 44
1.2.1 Voltage and current 1 1.7.4 Reactance of capacitors and
1.2.2 Relationship between voltage inductors 45
and current: resistors 3 1.7.5 Ohm s law generalized 46
1.2.3 Voltage dividers 7 1.7.6 Power in reactive circuits 47
1.2.4 Voltage sources and current sources 8 1.7.7 1.7.8 Voltage dividers generalized RC highpass filters 48 48
1.2.5 Thevenin equivalent circuit 9 1.7.9 RC lowpass filters 50
1.2.6 Small-signal resistance 12 1.7.10 RC differentiators and
1.2.7 An example: It s too hot! 13 integrators in the frequency
1.3 Signals 13 domain 51
1.3.1 Sinusoidal signals 14 1.7.11 Inductors versus capacitors 51
1.3.2 Signal amplitudes and decibels 14 1.7.12 Phasor diagrams 51
1.3.3 Other signals 15 1.7.13 Poles and decibels per octave 52
1.3.4 Logic levels 17 1.7.14 Resonant circuits 52
1.3.5 Signal sources 17 1.7.15 LC filters 54
1.4 Capacitors and ac circuits 18 1.7.16 Other capacitor applications 54
1.4.1 Capacitors 18 1.7.17 Thevenin s theorem generalized 55
1.4.2 RC circuits: V and I versus time 21 1.8 Putting it all together - an AM radio 55
1.4.3 Differentiators 25 1.9 Other passive components 56
1.4.4 Integrators 26 1.9.1 Electromechanical devices:
1.4.5 Not quite perfect... 28 switches 56
1.5 Inductors and transformers 28 1.9.2 Electromechanical devices:
1.5.1 Inductors 28 relays 59
1.5.2 Transformers 30 1.9.3 Connectors 59
1.6 Diodes and diode circuits 31 1.9.4 Indicators 61
1.6.1 Diodes 31 1.9.5 Variable components 63
1.6.2 Rectification 31 1.10 A parting shot: confusing markings and
1.6.3 Power-supply filtering 32 itty-bitty components 64
1.6.4 Rectifier configurations for power supplies 33 1.10.1 Surface-mount technology: the joy and the pain 65
x Contents
Art of Electronics Third Edition
Additional Exercises for Chapter 1
Review of Chapter 1
TWO: Bipolar Transistors
2.1 Introduction
2.1.1 First transistor model: current
amplifier
2.2 Some basic transistor circuits
2.2.1 Transistor switch
2.2.2 Switching circuit examples
2.2.3 Emitter follower
2.2.4 Emitter followers as voltage
regulators
2.2.5 Emitter follower biasing
2.2.6 Current source
2.2.7 Common-emitter amplifier
2.2.8 Unity-gain phase splitter
2.2.9 Transconductance
2.3 Ebers-Moll model applied to basic tran-
sistor circuits
2.3.1 Improved transistor model:
transconductance amplifier
2.3.2 Consequences of the
Ebers-Moll model: rules of
thumb for transistor design
2.3.3 The emitter follower revisited
2.3.4 The common-emitter amplifier
revisited
2.3.5 Biasing the common-emitter
amplifier
2.3.6 An aside: the perfect transistor
2.3.7 Current mirrors
2.3.8 Differential amplifiers
2.4 Some amplifier building blocks
2.4.1 Push-pull output stages
2.4.2 Darlington connection
2.4.3 Bootstrapping
2.4.4 Current sharing in paralleled
BJTs
2.4.5 Capacitance and Miller effect
2.4.6 Field-effect transistors
2.5 Negative feedback
2.5.1 Introduction to feedback
2.5.2 Gain equation
2.5.3 Effects of feedback on amplifier
circuits
2.5.4 Two important details
2.5.5 Two examples of transistor
amplifiers with feedback
2.6 Some typical transistor circuits
2.6.1 Regulated power supply 123
2.6.2 Temperature controller 123
2.6.3 Simple logic with transistors
and diodes 123
Additional Exercises for Chapter 2 124
Review of Chapter 2 126
THREE: Field-Effect Transistors 131
3.1 Introduction 131
3.1.1 FET characteristics 131
3.1.2 FET types 134
3.1.3 Universal FET characteristics 136
3.1.4 FET drain characteristics 137
3.1.5 Manufacturing spread of FET
characteristics 138
3.1.6 Basic FET circuits 140
3.2 FET linear circuits 141
3.2.1 Some representative JFETs: a
brief tour 141
3.2.2 JFET current sources 142
3.2.3 FET amplifiers 146
3.2.4 Differential amplifiers 152
3.2.5 Oscillators 155
3.2.6 Source followers 156
3.2.7 FETs as variable resistors 161
3.2.8 FET gate current 163
3.3 A closer look at JFETs 165
3.3.1 Drain current versus gate
voltage 165
3.3.2 Drain current versus
drain-source voltage: output
conductance 166
3.3.3 Transconductance versus drain
current 168
3.3.4 Transconductance versus drain
voltage 170
3.3.5 JFET capacitance 170
3.3.6 Why JFET (versus MOSFET)
amplifiers? 170
3.4 FET switches 171
3.4.1 FET analog switches 171
3.4.2 Limitations of FET switches 174
3.4.3 Some FET analog switch
examples 182
3.4.4 MOSFET logic switches 184
3.5 Power MOSFETs 187
3.5.1 High impedance, thermal
stability 187
3.5.2 Power MOSFET switching
parameters 192
66
68
71
71
72
73
73
75
79
82
83
85
87
88
89
90
90
91
93
93
96
99
101
102
105
106
109
111
112
113
115
115
116
116
117
120
121
123
Art of Electronics Third Edition
Contents xi
3.5.3 Power switching from logic 4.5 A detailed look at selected op-amp cir-
levels 192 cuits 254
3.5.4 Power switching cautions 196 4.5.1 Active peak detector 254
3.5.5 MOSFETs versus BJTs as 4.5.2 Sample-and-hold 256
high-current switches 201 4.5.3 Active clamp 257
3.5.6 Some power MOSFET circuit 4.5.4 Absolute-value circuit 257
examples 202 4.5.5 A closer look at the integrator 257
3.5.7 IGBTs and other power 4.5.6 A circuit cure for FET leakage 259
semiconductors 207 4.5.7 Differentiators 260
3.6 MOSFETs in linear applications 208 4.6 Op-amp operation with a single power
3.6.1 High-voltage piezo amplifier 208 supply 261
3.6.2 Some depletion-mode circuits 209 4.6.1 Biasing single-supply ac
3.6.3 Paralleling MOSFETs 212 amplifiers 261
3.6.4 Thermal runaway 214 4.6.2 Capacitive loads 264
Review of Chapter 3 219 4.6.3 Single-supply op-amps 265
4.6.4 Example: voltage-controlled
FOUR: Operational Amplifiers 223 oscillator 267
4.1 Introduction to op-amps - the perfect component 223 4.6.5 VCO implementation: through-hole versus
4.1.1 Feedback and op-amps 223 surface-mount 268
4.1.2 Operational amplifiers 224 4.6.6 Zero-crossing detector 269
4.1.3 The golden rules 225 4.6.7 An op-amp table 270
4.2 Basic op-amp circuits 225 4.7 Other amplifiers and op-amp types 270
4.2.1 Inverting amplifier 225 4.8 Some typical op-amp circuits 274
4.2.2 Noninverting amplifier 226 4.8.1 General-purpose lab amplifier 274
4.2.3 Follower 227 4.8.2 Stuck-node tracer 276
4.2.4 Difference amplifier 227 4.8.3 Load-current-sensing circuit 277
4.2.5 Current sources 228 4.8.4 Integrating suntan monitor 278
4.2.6 Integrators 230 4.9 Feedback amplifier frequency compensa-
4.2.7 Basic cautions for op-amp circuits 231 tion 4.9.1 Gain and phase shift versus 280
4.3 An op-amp smorgasbord 232 frequency 281
4.3.1 Linear circuits 232 4.9.2 Amplifier compensation
4.3.2 Nonlinear circuits 236 methods 282
4.3.3 Op-amp application: triangle-wave oscillator 239 4.9.3 Frequency response of the feedback network 284
4.3.4 Op-amp application: pinch-off
voltage tester 240
4.3.5 Programmable pulse-width
generator 241
4.3.6 Active lowpass filter 241
4.4 A detailed look at op-amp behavior 242
4.4.1 Departure from ideal op-amp
performance 243
4.4.2 Effects of op-amp limitations on
circuit behavior 249
4.4.3 Example: sensitive
millivoltmeter 253
4.4.4 Bandwidth and the op-amp
current source 254
Additional Exercises for Chapter 4
Review of Chapter 4
FIVE:
5.1
5.2
5.3
Precision Circuits
Precision op-amp design techniques
5.1.1 Precision versus dynamic range
5.1.2 Error budget
An example: the millivoltmeter, revisited
5.2.1 The challenge: lOmV, 1%,
10 Mil, 1.8 V single supply
5.2.2 The solution: precision RRIO
current source
The lessons: error budget, unspecified pa-
rameters
287
288
292
292
292
293
293
293
294
295
xii Contents
Art of Electronics Third Edition
5.4 Another example: precision amplifier with
null offset 297
5.4.1 Circuit description 297
5.5 A precision-design error budget 298
5.5.1 Error budget 299
5.6 Component errors 299
5.6.1 Gain-setting resistors 300
5.6.2 The holding capacitor 300
5.6.3 Nulling switch 300
5.7 Amplifier input errors 301
5.7.1 Input impedance 302
5.7.2 Input bias current 302
5.7.3 Voltage offset 304
5.7.4 Common-mode rejection 305
5.7.5 Power-supply rejection 306
5.7.6 Nulling amplifier: input errors 306
5.8 Amplifier output errors 307
5.8.1 Slew rate: general
considerations 307
5.8.2 Bandwidth and settling time 308
5.8.3 Crossover distortion and output
impedance 309
5.8.4 Unity-gain power buffers 311
5.8.5 Gain error 312
5.8.6 Gain nonlinearity 312
5.8.7 Phase error and active
compensation 314
5.9 RRIO op-amps: the good, the bad, and the
ugly 315
5.9.1 Input issues 316
5.9.2 Output issues 316
5.10 Choosing a precision op-amp 319
5.10.1 Seven precision op-amps 319
5.10.2 Number per package 322
5.10.3 Supply voltage, signal range 322
5.10.4 Single-supply operation 322
5.10.5 Offset voltage 323
5.10.6 Voltage noise 323
5.10.7 Bias current 325
5.10.8 Current noise 326
5.10.9 CMRR and PSRR 328
5.10.10 GBW,/T, slew rate and m,
and settling time 328
5.10.11 Distortion 329
5.10.12 Two out of three isn t bad :
creating a perfect op-amp 332
5.11 Auto-zeroing (chopper-stabilized) ampli-
fiers 333
5.11.1 Auto-zero op-amp properties 334
5.11.2 When to use auto-zero op-amps 338
5.11.3 Selecting an auto-zero op-amp 338
5.11.4 Auto-zero miscellany 340
5.12 Designs by the masters: Agilent s accurate
DMMs 342
5.12.1 It s impossible! 342
5.12.2 Wrong - it is possible! 342
5.12.3 Block diagram: a simple plan 343
5.12.4 The 34401A 6.5-digit front end 343
5.12.5 The 34420A 7.5-digit frontend 344
5.13 Difference, differential, and instrumenta-
tion amplifiers: introduction 347
5.14 Difference amplifier 348
5.14.1 Basic circuit operation 348
5.14.2 Some applications 349
5.14.3 Performance parameters 352
5.14.4 Circuit variations 355
5.15 Instmmentation amplifier 356
5.15.1 A first (but naive) guess 357
5.15.2 Classic three-op-amp
instrumentation amplifier 357
5.15.3 Input-stage considerations 358
5.15.4 A roll-your-own
instrumentation amplifier 359
5.15.5 A riff on robust input protection 362
5.16 Instrumentation amplifier miscellany 362
5.16.1 Input current and noise 362
5.16.2 Common-mode rejection 364
5.16.3 Source impedance and CMRR 365
5.16.4 EMI and input protection 365
5.16.5 Offset and CMRR trimming 366
5.16.6 Sensing at the load 366
5.16.7 Input bias path 366
5.16.8 Output voltage range 366
5.16.9 Application example: current
source 367
5.16.10 Other configurations 368
5.16.11 Chopper and auto-zero
instrumentation amplifiers 370
5.16.12 Programmable gain
instrumentation amplifiers 370
5.16.13 Generating a differential output 372
5.17 Fully differential amplifiers 373
5.17.1 Differential amplifiers: basic
concepts 374
5.17.2 Differential amplifier
application example: wideband
analog link 380
5.17.3 Differential-input ADCs 380
5.17.4 Impedance matching 382
Art of Electronics Third Edition
Contents xiii
5.17.5 Differential amplifier selection
criteria
Review of Chapter 5
SIX: Filters
6.1 Introduction
6.2 Passive filters
6.2.1 Frequency response with RC
filters
6.2.2 Ideal performance with LC
filters
6.2.3 Several simple examples
6.2.4 Enter active filters: an overview
6.2.5 Key filter performance criteria
6.2.6 Filter types
6.2.7 Filter implementation
6.3 Active-filter circuits
6.3.1 VCVS circuits
6.3.2 VCVS filter design using our
simplified table
6.3.3 State-variable filters
6.3.4 Twin-T notch filters
6.3.5 Allpass filters
6.3.6 S witched-capacitor filters
6.3.7 Digital signal processing
6.3.8 Filter miscellany
Additional Exercises for Chapter 6
Review of Chapter 6
SEVEN: Oscillators and Timers
7.1 Oscillators
7.1.1 Introduction to oscillators
7.1.2 Relaxation oscillators
7.1.3 The classic oscillator-timer
chip: the 555
7.1.4 Other relaxation-oscillator ICs
7.1.5 Sinewave oscillators
7.1.6 Quartz-crystal oscillators
7.1.7 Higher stability: TCXO,
OCXO, and beyond
7.1.8 Frequency synthesis: DDS and
PLL
7.1.9 Quadrature oscillators
7.1.10 Oscillator jitter
7.2 Timers
7.2.1 Step-triggered pulses
7.2.2 Monostable multivibrators
7.2.3 A monostable application:
limiting pulse width and duty
cycle
383
388
391
391
391
391
393
393
396
399
400
405
406
407
407
410
414
415
415
418
422
422
423
425
425
425
425
428
432
435
443
450
451
453
457
457
458
461
465
7.2.4 Timing with digital counters
Review of Chapter 7
EIGHT:
8.1
8.2
8.4
8.5
Low-Noise Techniques
Noise
8.1.1 Johnson (Nyquist) noise
Shot noise
1 If noise (flicker noise)
Burst noise
Band-limited noise
Interference
Signal-to-noise ratio and noise figure
8.2.1 Noise power density and
bandwidth
Signal-to-noise ratio
Noise figure
Noise temperature
8.1.2
8.1.3
8.1.4
8.1.5
8.1.6
8.2.2
8.2.3
8.2.4
8.3 Bipolar transistor amplifier noise
8.3.1 Voltage noise, e„
8.3.2 Current noise iB
8.3.3 BJT voltage noise, revisited
8.3.4 A simple design example:
loudspeaker as microphone
8.3.5 Shot noise in current sources
and emitter followers
from noise-figure specifica-
Finding e,
tions
8.4.1
8.4.2
8.4.3
Step 1: NF versus Ic
Step 2: NF versus Rs
Step 3: getting to ea
Step 4: the spectrum of e„
The spectrum of in
When operating current is not
your choice
Low-noise design with bipolar transistors
8.5.1 Noise-figure example
Charting amplifier noise with ea
and in
Noise resistance
Charting comparative noise
Low-noise design with BJTs:
two examples
Minimizing noise: BJTs, FETs,
and transformers
A design example: 400
lightning detector preamp
Selecting a low-noise bipolar
transistor
An extreme low-noise design
challenge
8.4.4
8.4.5
8.4.6
8.5.2
8.5.3
8.5.4
8.5.5
8.5.6
8.5.7
8.5.8
8.5.9
465
470
473
473
474
475
476
477
477
478
478
479
479
479
480
481
481
483
484
486
487
489
489
489
490
491
491
491
492
492
493
494
495
495
496
497
500
505
xiv Contents
Art of Electronics Third Edition
5.6 Low-noise design with JFETS
8.6.1 Voltage noise of JFETs
8.6.2 Current noise of JFETs
8.6.3 Design example: low-noise
wideband JFET hybrid
amplifiers
8.6.4 Designs by the masters: SR560
low-noise preamplifier
8.6.5 Selecting low-noise JFETS
5.7 Charting the bipolar-FET shootout
8.7.1 What about MOSFETs?
8.8 Noise in differential and feedback ampli-
fiers
8.9 Noise in operational amplifier circuits
8.9.1 Guide to Table 8.3: choosing
low-noise op-amps
8.9.2 Power-supply rejection ratio
8.9.3 Wrapup: choosing a low-noise
op-amp
8.9.4 Low-noise instrumentation
amplifiers and video amplifiers
8.9.5 Low-noise hybrid op-amps
Signal transformers
8.10.1 A low-noise wideband amplifier
with transformer feedback
Noise in transimpedance amplifiers
8.11.1 Summary of the stability
problem
8.11.2 Amplifier input noise
8.11.3 The e„C noise problem
8.11.4 Noise in the transresistance
amplifier
8.11.5 An example: wideband JFET
photodiode amplifier
8.11.6 Noise versus gain in the
transimpedance amplifier
8.11.7 Output bandwidth limiting in
the transimpedance amplifier
8.11.8 Composite transimpedance
amplifiers
8.11.9 Reducing input capacitance:
bootstrapping the
transimpedance amplifier
8.11.10 Isolating input capacitance:
cascoding the transimpedance
amplifier
8.11.11 Transimpedance amplifiers with
capacitive feedback
8.11.12 Scanning tunneling microscope
preamplifier
.10
8.11
509 8.11.13 Test fixture for compensation
509 and calibration
511 8.11.14 A final remark
8.12 Noise measurements and noise sources 8.12.1 Measurement without a noise
512 source 8.12.2 An example: transistor-noise
512 test circuit
515 8.12.3 Measurement with a noise
517 source
519 8.12.4 Noise and signal sources
8.13 Bandwidth limiting and rms voltage mea-
520 surement
521 8.13.1 Limiting the bandwidth 8.13.2 Calculating the integrated noise
525 8.13.3 Op-amp low-frequency noise
533 with asymmetric filter 8.13.4 Finding the 1 If comer frequency
533 8.13.5 Measuring the noise voltage 8.13.6 Measuring the noise current
533 8.13.7 Another way: roll-your-own
534 fA/i/Hz instrument
535 8.13.8 Noise potpourri
536 8.14 Signal-to-noise improvement by band-
width narrowing
537 8.14.1 Lock-in detection
537 538 538 8.15 Power-supply noise
8.15.1 Capacitance multiplier
8.16 Interference, shielding, and grounding
8.16.1 Interfering signals
539 8.16.2 Signal grounds
8.16.3 Grounding between instruments
540 Additional Exercises for Chapter 8
Review of Chapter 8
540
NINE: Voltage Regulation and Power Conver-
542 sion
9.1 Tutorial: from zener to series-pass linear
543 regulator 9.1.1 Adding feedback
9.2 Basic linear regulator circuits with the
547 classic 723 9.2.1 The 723 regulator 9.2.2 In defense of the beleaguered
548 723
9.3 Fully integrated linear regulators
552 9.3.1 Taxonomy of linear regulator ICs
553 9.3.2 Three-terminal fixed regulators
554
555
555
555
556
556
558
561
561
563
564
566
567
569
571
574
574
575
578
578
579
579
582
583
588
590
594
595
596
598
598
600
600
601
601
Art of Electronics Third Edition
Contents xv
9.3.3 Three-terminal adjustable 9.7.1 The ac-to-dc input stage 660
regulators 602 9.7.2 The dc-to-dc converter 662
9.3.4 317-style regulator: application 9.8 A real-world switcher example 665
hints 604 9.8.1 Switchers: top-level view 665
9.3.5 317-style regulator: circuit 9.8.2 Switchers: basic operation 665
examples 608 9.8.3 Switchers: looking more closely 668
9.3.6 Lower-dropout regulators 610 9.8.4 The reference design 671
9.3.7 True low-dropout regulators 611 9.8.5 Wrapup: general comments on
9.3.8 Current-reference 3-terminal line-powered switching power
regulator 611 supplies 672
9.3.9 Dropout voltages compared 612 9.8.6 When to use switchers 672
9.3.10 Dual-voltage regulator circuit 9.9 Inverters and switching amplifiers 673
example 613 9.10 Voltage references 674
9.3.11 Linear regulator choices 613 9.10.1 Zener diode 674
9.3.12 Linear regulator idiosyncrasies 613 9.10.2 Bandgap (Vbe) reference 679
9.3.13 Noise and ripple filtering 619 9.10.3 JFET pinch-off (Vp) reference 680
9.3.14 Current sources 620 9.10.4 Floating-gate reference 681
Heat and power design 623 9.10.5 Three-terminal precision
9.4.1 Power transistors and references 681
heatsinking 624 9.10.6 Voltage reference noise 682
9.4.2 Safe operating area 627 9.10.7 Voltage references: additional
From ac line to unregulated supply 628 Comments 683
9.5.1 ac-line components 629 9.11 Commercial power-supply modules 684
9.5.2 Transformer 632 9.12 Energy storage: batteries and capacitors 686
9.5.3 dc components 633 9.12.1 Battery characteristics 687
9.5.4 Unregulated split supply - on 9.12.2 Choosing a battery 688
the bench! 634 9.12.3 Energy storage in capacitors 688
9.5.5 Linear versus switcher: ripple 9.13 Additional topics in power regulation 690
and noise 635 9.13.1 Overvoltage crowbars 690
Switching regulators and dc-dc convert- 9.13.2 Extending input-voltage range 693
ers 636 9.13.3 Foldback current limiting 693
9.6.1 Linear versus switching 636 9.13.4 Outboard pass transistor 695
9.6.2 Switching converter topologies 638 9.13.5 High-voltage regulators 695
9.6.3 Inductorless switching Review of Chapter 9 699
converters 638
9.6.4 Converters with inductors: the TEN: Digital Logic 703
basic non-isolated topologies 641 10.1 Basic logic concepts 703
9.6.5 Step-down (buck) converter 642 10.1.1 Digital versus analog 703
9.6.6 Step-up (boost) converter 647 10.1.2 Logic states 704
9.6.7 Inverting converter 648 10.1.3 Number codes 705
9.6.8 Comments on the non-isolated 10.1.4 Gates and truth tables 708
converters 649 10.1.5 Discrete circuits for gates 711
9.6.9 Voltage mode and current mode 651 10.1.6 Gate-logic example 712
9.6.10 Converters with transformers: 10.1.7 Assertion-level logic notation 713
the basic designs 653 10.2 Digital integrated circuits: CMOS and
9.6.11 The flyback converter 655 Bipolar (TTL) 714
9.6.12 Forward converters 656 10.2.1 Catalog of common gates 715
9.6.13 Bridge converters 659 10.2.2 IC gate circuits 717
Ac-line-powered ( offline ) switching 10.2.3 CMOS and bipolar ( TTL )
converters 660 characteristics 718
xvi Contents
Art of Electronics Third Edition
10.2.4 Three-state and open-collector
devices 720
10.3 Combinational logic 722
10.3.1 Logic identities 722
10.3.2 Minimization and Karnaugh
maps 723
10.3.3 Combinational functions
available as ICs 724
10.4 Sequential logic 728
10.4.1 Devices with memory: flip-flops 728
10.4.2 Clocked flip-flops 730
10.4.3 Combining memory and gates:
sequential logic 734
10.4.4 Synchronizer 737
10.4.5 Monostable multivibrator 739
10.4.6 Single-pulse generation with
flip-flops and counters 739
10.5 Sequential functions available as inte-
grated circuits 740
10.5.1 Latches and registers 740
10.5.2 Counters 741
10.5.3 Shift registers 744
10.5.4 Programmable logic devices 745
10.5.5 Miscellaneous sequential
functions 746
10.6 Some typical digital circuits 748
10.6.1 Modulo-n counter: a timing
example 748
10.6.2 Multiplexed LED digital display 751
10.6.3 An n-pulse generator 752
10.7 Micropower digital design 753
10.7.1 Keeping CMOS low power 754
10.8 Logic pathology 755
10.8.1 dc problems 755
10.8.2 Switching problems 756
10.8.3 Congenital weaknesses of TTL
and CMOS 758
Additional Exercises for Chapter 10 760
Review of Chapter 10 762
ELEVEN: Programmable Logic Devices 764
11.1 A brief history 764
11.2 The hardware 765
11.2.1 The basic PAL 765
11.2.2 ThePLA 768
11.2.3 The FPGA 768
11.2.4 The configuration memory 769
11.2.5 Other programmable logic
devices 769
11.2.6 The software 769
11.3 An example: pseudorandom byte genera-
tor 770
11.3.1 How to make pseudorandom
bytes 771
11.3.2 Implementation in standard
logic 772
11.3.3 Implementation with
programmable logic 772
11.3.4 Programmable logic - HDL
entry 775
11.3.5 Implementation with a
microcontroller 777
11.4 Advice 782
11.4.1 By Technologies 782
11.4.2 By User Communities 785
Review of Chapter 11 787
TWELVE: Logic Interfacing 790
12.1 CMOS and TTL logic interfacing 790
12.1.1 Logic family chronology - a
brief history 790
12.1.2 Input and output characteristics 794
12.1.3 Interfacing between logic
families 798
12.1.4 Driving digital logic inputs 802
12.1.5 Input protection 804
12.1.6 Some comments about logic
inputs 805
12.1.7 Driving digital logic from
comparators or op-amps 806
12.2 An aside: probing digital signals 808
12.3 Comparators 809
12.3.1 Outputs 810
12.3.2 Inputs 812
12.3.3 Other parameters 815
12.3.4 Other cautions 816
12.4 Driving external digital loads from logic
levels 817
12.4.1 Positive loads: direct drive 817
12.4.2 Positive loads: transistor
assisted 820
12.4.3 Negative or ac loads 821
12.4.4 Protecting power switches 823
12.4.5 nMOS LSI interfacing 826
12.5 Optoelectronics: emitters 829
12.5.1 Indicators and LEDs 829
12.5.2 Laser diodes 834
12.5.3 Displays 836
12.6 Optoelectronics: detectors 840
Art of Electronics Third Edition
Contents xvii
12.6.1 Photodiodes and
phototransistors
12.6.2 Photomultipliers
12.7 Optocouplers and relays
12.7.1 I: Phototransistor output
optocouplers
12.7.2 II: Logic-output optocouplers
12.7.3 III: Gate driver optocouplers
12.7.4 IV: Analog-oriented
optocouplers
12.7.5 V: Solid-state relays (transistor
output)
12.7.6 VI: Solid-state relays (triac/SCR
output)
12.7.7 VII: ac-input optocouplers
12.7.8 Interrupters
12.8 Optoelectronics: fiber-optic digital links
12.8.1 TOSLINK
12.8.2 Versatile Link
12.8.3 ST/SC glass-fiber modules
12.8.4 Fully integrated high-speed
fiber-transceiver modules
12.9 Digital signals and long wires
12.9.1 On-board interconnections
12.9.2 Intercard connections
12.10 Driving Cables
12.10.1 Coaxial cable
12.10.2 The right way -1: Far-end
termination
12.10.3 Differential-pair cable
12.10.4 RS-232
12.10.5 Wrapup
Review of Chapter 12
THIRTEEN : Digital meets Analog
13.1 Some preliminaries
13.1.1 Thebasic performance
parameters
13.1.2 Codes
13.1.3 Converter errors
13.1.4 Stand-alone versus integrated
13.2 Digital-to-analog converters
13.2.1 Resistor-string DACs
13.2.2 R-2R ladder DACs
13.2.3 Current-steering DACs
13.2.4 Multiplying DACs
13.2.5 Generating a voltage output
13.2.6 Six DACs
13.2.7 Delta-sigma DACs
13.2.8 PWM as digital-to-analog
841 converter 888
842 13.2.9 Frequency-to-voltage converters 890
843 13.2.10 Rate multiplier 13.2.11 Choosing a DAC 890 891
844 13.3 Some DAC application examples 891
844 13.3.1 General-purpose laboratory
846 source 13.3.2 Eight-channel source 891 893
847 13.3.3 Nanoamp wide-compliance bipolarity current source 894
848 13.3.4 Precision coil driver 897
13.4 Converter linearity - a closer look 899
849 13.5 Analog-to-digital converters 900
851 13.5.1 Digitizing: aliasing, sampling
851 rate, and sampling depth 900
852 13.5.2 ADC Technologies 902
852 13.6 ADCs I: Parallel ( flash ) encoder 903
854 13.6.1 Modified flash encoders 903
855 13.6.2 Driving flash, folding, and RF ADCs 904
855 13.6.3 Undersampling flash-converter
856 example 907
856 13.7 ADCs II: Successive approximation 908
858 13.7.1 A simple S AR example 909
858 13.7.2 Variations on successive 909
858 approximation
13.7.3 An A/D conversion example 910
860 13.8 ADCs III: integrating 912
864 13.8.1 Voltage-to-frequency
871 874 conversion 912
13.8.2 Single-slope integration 914
875 13.8.3 Integrating converters 914
13.8.4 Dual-slope integration 13.8.5 Analog switches in conversion 914
879 applications (a detour) 916
879 13.8.6 Designs by the masters: Agilent s world-class
879 multislope converters 918
880 13.9 ADCs IV: delta-sigma 922
880 13.9.1 A simple delta-sigma for our
880 suntan monitor 922
881 13.9.2 Demystifying the delta-sigma
881 converter 923
882 13.9.3 AX ADC and DAC 923
883 13.9.4 The AX process 924
884 13.9.5 An aside: noise shaping 927
885 13.9.6 The bottom line 928
886 888 13.9.7 A simulation 13.9.8 What about DACs? 928 930
xviii Contents
Art of Electronics Third Edition
13.9.9 Pros and Cons of AX 13.14.8 A hybrid digital filter 983
oversampling converters 931 Additional Exercises for Chapter 13 984
13.9.10 Idle tones 932 Review of Chapter 13 985
13.9.11 Some delta-sigma application
examples 932 FOURTEEN: Computers, Controllers, and
13.10 ADCs: choices and tradeoffs 938 Data Links 989
13.10.1 Delta-sigma and the 14.1 Computer architecture: CPU and data bus 990
competition 938 14.1.1 CPU 990
13.10.2 Sampling versus averaging 14.1.2 Memory 991
ADCs: noise 940 14.1.3 Mass memory 991
13.10.3 Micropower AID converters 941 14.1.4 Graphics, network, parallel, and
13.11 Some unusual A/D and D/ A converters 942 serial ports 992
13.11.1 ADE7753 multifunction ac 14.1.5 Real-time I/O 992
power metering IC 943 14.1.6 Data bus 992
13.11.2 AD7873 touchscreen digitizer 944 14.2 A computer instruction set 993
13.11.3 AD7927 ADC with sequencer 945 14.2.1 Assembly language and
13.11.4 AD7730 precision machine language 993
bridge-measurement subsystem 945 14.2.2 Simplified x86 instruction set 993
13.12 Some A/D conversion system examples 946 14.2.3 A programming example 996
13.12.1 Multiplexed 16-channel 14.3 Bus signals and interfacing 997
data-acquisition system 946 14.3.1 Fundamental bus signals: data,
13.12.2 Parallel multichannel address, strobe 997
successive-approximation 14.3.2 Programmed I/O: data out 998
data-acquisition system 950 14.3.3 Programming the XY vector
13.12.3 Parallel multichannel display 1000
delta-sigma data-acquisition 14.3.4 Programmed I/O: data in 1001
system 952 14.3.5 Programmed I/O: status
13.13 Phase-locked loops 955 registers 1002
13.13.1 Introduction to phase-locked 14.3.6 Programmed I/O: command
loops 955 registers 1004
13.13.2 PLL components 957 14.3.7 Interrupts 1005
13.13.3 PLL design 960 14.3.8 Interrupt handling 1006
13.13.4 Design example: frequency 14.3.9 Interrupts in general 1008
multiplier 961 14.3.10 Direct memory access 1010
13.13.5 PLL capture and lock 964 14.3.11 Summary of PCI04/ISA 8-bit
13.13.6 Some PLL applications 966 bus signals 1012
13.13.7 Wrapup: noise and jitter 14.3.12 The PC104 as an embedded
rejection in PLLs 974 single-board computer 1013
13.14 Pseudorandom bit sequences and noise 14.4 Memory types 1014
generation 974 14.4.1 Volatile and non-volatile
13.14.1 Digital-noise generation 974 memory 1014
13.14.2 Feedback shift register 14.4.2 Static versus dynamic RAM 1015
sequences 975 14.4.3 Static RAM 1016
13.14.3 Analog noise generation from 14.4.4 Dynamic RAM 1018
maximal-length sequences 977 14.4.5 Nonvolatile memory 1021
13.14.4 Power spectrum of shift-register 14.4.6 Memory wrapup 1026
sequences 977 14.5 Other buses and data links: overview 1027
13.14.5 Low-pass filtering 979 14.6 Parallel buses and data links 1028
13.14.6 Wrapup 981 14.6.1 Parallel chip bus interface -
13.14.7 True random noise generators 982 an example 1028
Art of Electronics Third Edition
Contents xix
14.6.2 Parallel chip data links - two
high-speed examples 1030
14.6.3 Other parallel computer buses 1030
14.6.4 Parallel peripheral buses and
data links 1031
14.7 Serial buses and data links 1032
14.7.1 SPI 1032
14.7.2 I2C 2-wire interface ( TWI ) 1034
14.7.3 Dallas-Maxim 1-wire serial
interface 1035
14.7.4 JTAG 1036
14.7.5 Clock-be-gone: clock recovery 1037
14.7.6 SATA, eSATA, and SAS 1037
14.7.7 PCI Express 1037
14.7.8 Asynchronous serial (RS-232,
RS-485) 1038
14.7.9 Manchester coding 1039
14.7.10 Biphase coding 1041
14.7.11 RLL binary: bit stuffing 1041
14.7.12 RLL coding: 8b/10b and others 1041
14.7.13 USB 1042
14.7.14 FireWire 1042
14.7.15 Controller Area Network
(CAN) 1043
14.7.16 Ethernet 1045
14.8 Number formats 1046
14.8.1 Integers 1046
14.8.2 Floating-point numbers 1047
Review of Chapter 14 1049
FIFTEEN: Microcontrollers 1053
15.1 Introduction 1053
15.2 Design example 1: suntan monitor (V) 1054
15.2.1 Implementation with a
microcontroller 1054
15.2.2 Microcontroller code
( firmware ) 1056
15.3 Overview of popular microcontroller fam-
ilies 1059
15.3.1 On-chip peripherals 1061
15.4 Design example 2: ac power control 1062
15.4.1 Microcontroller implementation 1062
15.4.2 Microcontroller code 1064
15.5 Design example 3: frequency synthesizer 1065
15.5.1 Microcontroller code 1067
15.6 Design example 4: thermal controller 1069
15.6.1 The hardware 1070
15.6.2 The control loop 1074
15.6.3 Microcontroller code 1075
15.7
15.8
15.9
Design example 5: stabilized mechanical
platform
Peripheral ICs for microcontrollers
15.8.1 Peripherals with direct
connection
Peripherals with SPI connection
Peripherals with I2C connection
Some important hardware
constraints
Development environment
15.9.1 Software
Real-time programming
constraints
Hardware
The Arduino Project
15.8.2
15.8.3
15.8.4
15.9.2
15.9.3
15.9.4
15.10 Wrapup
15.10.1 How expensive are the tools?
15.10.2 When to use microcontrollers
15.10.3 How to select a microcontroller
15.10.4 A parting shot
Review of Chapter 15
APPENDIX A: Math Review
A.l Trigonometry, exponentials, and loga-
rithms
A.2 Complex numbers
A.3 Differentiation (Calculus)
A.3.1 Derivatives of some common
functions
A.3.2 Some rules for combining
derivatives
A.3.3 Some examples of
differentiation
APPENDIX B
grams
B.l
B.2
How to Draw Schematic Dia-
General principles
Rules
B.3 Hints
B.4 A humble example
APPENDIX C: Resistor Types
C. 1 Some history
C.2 Available resistance values
C.3 Resistance marking
C.4 Resistor types
C.5 Confusion derby
APPENDIX D: Thevenin s Theorem
D. 1 The proof
1077
1078
1079
1082
1084
1086
1086
1086
1088
1089
1092
1092
1092
1093
1094
1094
1095
1097
1097
1097
1099
1099
1100
1100
1101
1101
1101
1103
1103
1104
1104
1104
1105
1105
1105
1107
1107
xx Contents
Art of Electronics Third Edition
D. 1.1 Two examples - voltage
dividers
D.2 Norton s theorem
D.3 Another example
D.4 Millman s theorem
APPENDIX E: LC Butterworth Filters
E. 1 Lowpass filter
E.2 Highpass filter
E.3 Filter examples
APPENDIX F: Load Lines
F.l An example
F.2 Three-terminal devices
F.3 Nonlinear devices
APPENDIX G: The Curve TVacer
APPENDIX H: Transmission Lines and
Impedance Matching
H. 1 Some properties of transmission lines
H. 1.1 Characteristic impedance
H. 1.2 Termination: pulses
H.1.3 Termination: sinusoidal signals
H. 1.4 Loss in transmission lines
H.2 Impedance matching
H.2.1 Resistive (lossy) broadband
matching network
H.2.2 Resistive attenuator
H.2.3 Transformer (lossless)
broadband matching network
H.2.4 Reactive (lossless) narrowband
matching networks
H.3 Lumped-element delay lines and pulse-
forming networks
H.4 Epilogue: ladder derivation of characteris-
tic impedance
H.4.1 First method: terminated line
H.4.2 Second method: semi-infinite
line
H.4.3 Postscript: lumped-element
delay lines
APPENDIX I: Television: A Compact Tutorial
I.1 Television: video plus audio
I.1.1 The audio
1.1.2 The video
1.2 Combining and sending the audio + video:
modulation
1.3 Recording analog-format broadcast or ca-
ble television 1135
1.4 Digital television: what is it? 1136
1.5 Digital television: broadcast and cable de-
livery 1138
1.6 Direct satellite television 1139
1.7 Digital video streaming over internet 1140
1.8 Digital cable: premium services and con-
ditional access 1141
1.8.1 Digital cable: video-on-demand 1141
1.8.2 Digital cable: switched
broadcast 1142
1.9 Recording digital television 1142
1.10 Display technology 1142
1.11 Video connections: analog and digital 1143
APPENDIX J: SPICE Primer 1146
J.l Setting up ICAP SPICE 1146
J.2 Entering a Diagram 1146
J.3 Running a simulation 1146
J.3.1 Schematic entry 1146
J.3.2 Simulation: frequency sweep 1147
J.3.3 Simulation: input and output
waveforms 1147
J.4 Some final points 1148
J.5 A detailed example: exploring amplifier
distortion 1148
J.6 Expanding the parts database 1149
APPENDIX K: Where Do I Go to Buy Elec-
tronic Goodies? 1150
APPENDIX L: Workbench Instruments and
Tools 1152
APPENDIX M: Catalogs, Magazines, Data-
books 1153
APPENDIX N: Further Reading and Refer-
ences 1154
APPENDIX O: The Oscilloscope 1158
O.l The analog oscilloscope 1158
O.l.l Vertical 1158
0.1.2 Horizontal 1158
0.1.3 Triggering 1159
0.1.4 Hints for beginners 1160
0.1.5 Probes 1160
0.1.6 Grounds 1161
0.1.7 Other analog scope features 1161
0.2 The digital oscilloscope 1162
1107
1108
1108
1108
1109
1109
1109
1109
1112
1112
1112
1113
1115
1116
1116
1116
1117
1120
1121
1122
1123
1123
1124
1125
1126
1127
1127
1127
1128
1131
1131
1131
1132
1133
Art of Electronics Third Edition Contents xxi
0.2.1 What s different? 1162 APPENDIX P: Acronyms and Abbreviations 1166
0.2.2 Some cautions 1164
Index 1171
|
any_adam_object | 1 |
author | Horowitz, Paul 1942- Hill, Winfield |
author_GND | (DE-588)1074038940 (DE-588)107403936X |
author_facet | Horowitz, Paul 1942- Hill, Winfield |
author_role | aut aut |
author_sort | Horowitz, Paul 1942- |
author_variant | p h ph w h wh |
building | Verbundindex |
bvnumber | BV042487132 |
callnumber-first | T - Technology |
callnumber-label | TK7870 |
callnumber-raw | TK7870 TK7815 .H67 2015 |
callnumber-search | TK7870 TK7815 .H67 2015 |
callnumber-sort | TK 47870 |
callnumber-subject | TK - Electrical and Nuclear Engineering |
classification_rvk | ZN 5400 ZN 4000 UX 2200 AP 18100 |
classification_tum | ELT 230f |
ctrlnum | (OCoLC)255584150 (DE-599)BVBBV042487132 |
dewey-full | 621.381 621.381/32 |
dewey-hundreds | 600 - Technology (Applied sciences) |
dewey-ones | 621 - Applied physics |
dewey-raw | 621.381 621.381/32 |
dewey-search | 621.381 621.381/32 |
dewey-sort | 3621.381 |
dewey-tens | 620 - Engineering and allied operations |
discipline | Physik Allgemeines Elektrotechnik Elektrotechnik / Elektronik / Nachrichtentechnik |
edition | Third edition |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02931nam a2200613 c 4500</leader><controlfield tag="001">BV042487132</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20210820 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">150408s2015 a||| |||| 00||| eng d</controlfield><datafield tag="010" ind1=" " ind2=" "><subfield code="a">2015002303</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780521809269</subfield><subfield code="c">hbk. : ca. 87.30 EUR (DE), £ 59.99</subfield><subfield code="9">978-0-521-80926-9</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780521809269</subfield><subfield code="9">978-0-521-80926-9</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)255584150</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV042487132</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-B768</subfield><subfield code="a">DE-573</subfield><subfield code="a">DE-91G</subfield><subfield code="a">DE-634</subfield><subfield code="a">DE-898</subfield><subfield code="a">DE-Aug4</subfield><subfield code="a">DE-523</subfield><subfield code="a">DE-92</subfield><subfield code="a">DE-11</subfield><subfield code="a">DE-19</subfield><subfield code="a">DE-522</subfield><subfield code="a">DE-29T</subfield><subfield code="a">DE-M347</subfield><subfield code="a">DE-860</subfield><subfield code="a">DE-859</subfield><subfield code="a">DE-83</subfield><subfield code="a">DE-210</subfield><subfield code="a">DE-861</subfield><subfield code="a">DE-355</subfield><subfield code="a">DE-1050</subfield><subfield code="a">DE-1047</subfield><subfield code="a">DE-B170</subfield><subfield code="a">DE-858</subfield><subfield code="a">DE-706</subfield><subfield code="a">DE-862</subfield><subfield code="a">DE-20</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-188</subfield><subfield code="a">DE-91</subfield><subfield code="a">DE-1046</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">TK7870</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">TK7815 .H67 2015</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">621.381</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">621.381/32</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">ZN 5400</subfield><subfield code="0">(DE-625)157454:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">ZN 4000</subfield><subfield code="0">(DE-625)157336:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">UX 2200</subfield><subfield code="0">(DE-625)146949:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">AP 18100</subfield><subfield code="0">(DE-625)7040:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">ELT 230f</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Horowitz, Paul</subfield><subfield code="d">1942-</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)1074038940</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">The art of electronics</subfield><subfield code="c">Paul Horowitz (Havard University), Winfield Hill (Rowland Institute at Havard)</subfield></datafield><datafield tag="250" ind1=" " ind2=" "><subfield code="a">Third edition</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">New York, NY</subfield><subfield code="b">Cambridge University Press</subfield><subfield code="c">2015</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">xxxi, 1230 Seiten</subfield><subfield code="b">Illustrationen, Diagramme</subfield><subfield code="c">26 cm</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Literaturverzeichnis: Seite 1154 - 1157 ; Hier auch später erschienene, unveränderte Nachdrucke</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Electronics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Electronic circuit design</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Elektroakustik</subfield><subfield code="0">(DE-588)4014234-6</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Elektronik</subfield><subfield code="0">(DE-588)4014346-6</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Elektronische Schaltung</subfield><subfield code="0">(DE-588)4113419-9</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Elektronische Schaltung</subfield><subfield code="0">(DE-588)4113419-9</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Elektronik</subfield><subfield code="0">(DE-588)4014346-6</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="2" ind2="0"><subfield code="a">Elektroakustik</subfield><subfield code="0">(DE-588)4014234-6</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="2" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Hill, Winfield</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)107403936X</subfield><subfield code="4">aut</subfield></datafield><datafield tag="775" ind1="0" ind2="8"><subfield code="i">Parallele Sprachausgabe</subfield><subfield code="n">deutsch</subfield><subfield code="t">Die hohe Schule der Elektronik</subfield><subfield code="w">(DE-604)BV010909445</subfield></datafield><datafield tag="787" ind1="0" ind2="8"><subfield code="i">Ergänzung</subfield><subfield code="a">Hayer, Thomas C.</subfield><subfield code="t">Learning the art of electronics - a hands-on lab course</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="q">text/html</subfield><subfield code="u">http://www.cambridge.org/de/academic/subjects/physics/electronics-physicists/art-electronics-3rd-edition?format=HB</subfield><subfield code="3">Ausführliche Beschreibung</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">HBZ Datenaustausch</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=027921991&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-027921991</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield></record></collection> |
id | DE-604.BV042487132 |
illustrated | Illustrated |
indexdate | 2025-02-20T06:43:15Z |
institution | BVB |
isbn | 9780521809269 |
language | English |
lccn | 2015002303 |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-027921991 |
oclc_num | 255584150 |
open_access_boolean | |
owner | DE-B768 DE-573 DE-91G DE-BY-TUM DE-634 DE-898 DE-BY-UBR DE-Aug4 DE-523 DE-92 DE-11 DE-19 DE-BY-UBM DE-522 DE-29T DE-M347 DE-860 DE-859 DE-83 DE-210 DE-861 DE-355 DE-BY-UBR DE-1050 DE-1047 DE-B170 DE-858 DE-706 DE-862 DE-BY-FWS DE-20 DE-703 DE-188 DE-91 DE-BY-TUM DE-1046 |
owner_facet | DE-B768 DE-573 DE-91G DE-BY-TUM DE-634 DE-898 DE-BY-UBR DE-Aug4 DE-523 DE-92 DE-11 DE-19 DE-BY-UBM DE-522 DE-29T DE-M347 DE-860 DE-859 DE-83 DE-210 DE-861 DE-355 DE-BY-UBR DE-1050 DE-1047 DE-B170 DE-858 DE-706 DE-862 DE-BY-FWS DE-20 DE-703 DE-188 DE-91 DE-BY-TUM DE-1046 |
physical | xxxi, 1230 Seiten Illustrationen, Diagramme 26 cm |
publishDate | 2015 |
publishDateSearch | 2015 |
publishDateSort | 2015 |
publisher | Cambridge University Press |
record_format | marc |
spellingShingle | Horowitz, Paul 1942- Hill, Winfield The art of electronics Electronics Electronic circuit design Elektroakustik (DE-588)4014234-6 gnd Elektronik (DE-588)4014346-6 gnd Elektronische Schaltung (DE-588)4113419-9 gnd |
subject_GND | (DE-588)4014234-6 (DE-588)4014346-6 (DE-588)4113419-9 |
title | The art of electronics |
title_auth | The art of electronics |
title_exact_search | The art of electronics |
title_full | The art of electronics Paul Horowitz (Havard University), Winfield Hill (Rowland Institute at Havard) |
title_fullStr | The art of electronics Paul Horowitz (Havard University), Winfield Hill (Rowland Institute at Havard) |
title_full_unstemmed | The art of electronics Paul Horowitz (Havard University), Winfield Hill (Rowland Institute at Havard) |
title_short | The art of electronics |
title_sort | the art of electronics |
topic | Electronics Electronic circuit design Elektroakustik (DE-588)4014234-6 gnd Elektronik (DE-588)4014346-6 gnd Elektronische Schaltung (DE-588)4113419-9 gnd |
topic_facet | Electronics Electronic circuit design Elektroakustik Elektronik Elektronische Schaltung |
url | http://www.cambridge.org/de/academic/subjects/physics/electronics-physicists/art-electronics-3rd-edition?format=HB http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=027921991&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
work_keys_str_mv | AT horowitzpaul theartofelectronics AT hillwinfield theartofelectronics |
Inhaltsverzeichnis
THWS Schweinfurt Zentralbibliothek Lesesaal
Signatur: |
2000 ZN 4000 H816(3) |
---|---|
Exemplar 1 | ausleihbar Verfügbar Bestellen |