Zur Strukturtheorie sequentieller Automaten:
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | German |
Veröffentlicht: |
Wiesbaden
VS Verlag für Sozialwissenschaften
1964
|
Schriftenreihe: | Forschungsberichte des Landes Nordrhein-Westfalen
1279 |
Schlagworte: | |
Online-Zugang: | FLA01 Volltext |
Beschreibung: | 1.1. Überblick über die in der Literatur benutzten abstrakten Modelle sequentieller Automaten 1955 Modelle abstrakter sequentieller Maschinen treten erstmalig bei MOORE [M 56.6] und MEALY [M 55.1] auf. Sie sind gekennzeichnet durch eine endliche Anzahl von Zuständen, Eingangs-Symbolen und Ausgangs Symbolen. Das Modell von MOORE ist ein System von streng deterministischem Ver halten, in dem der augenblickliche Zustand der Maschine nur von dem vorhergehenden Eingangs-Symbol und dem vorhergehenden Zustand, das augenblickliche Ausgangs-Symbol nur von dem augenblicklichen Zustand abhängt. Bei dem Modell von MEALY sind das augenblickliche Ausgangs Symbol und der nächste Zustand eindeutig durch das augenblickliche Ein gangs-Symbol und den augenblicklichen Zustand bestimmt. Die Darstellung dieser Beziehungen erfolgt durch Tabellen und Zustands diagramme. 1957 Eine formalere Definition sequentieller Automaten findet man bei BURKS [B 57.1]. Eingangs-, Ausgangs-Symbole und Zustände werden auf natür liche Zahlen abgebildet. Die Zeit wird durch die Menge aller natürlichen Zahlen erfaßt. Man hat Mengen von natürlichen Zahlen X, Y, S, deren funktioneller Zusammenhang gegeben ist durch S (t+1)=g [x (t), S (t)] Y (t)=J[x (t), S (t)], dem Modell von MEALY entsprechend. AUFENKAMP [A 57.2] wählt eine Darstellung mit Transitions-Matrizen (g entsprechend) und Ausgangs-Matrizen Cf entsprechend) bzw. mit qua dratischen Verbindungs-Matrizen von Paaren (x,y) A XE X AYE Y über den Zuständen SES. 1958 Eine Erweiterung der funktionellen Beziehungen zwischen X, Yund Sauf 1959 Folgen von Eingangs-bzw. Ausgangs-Symbolen wird bei RANEY [R 58.7], GINSBURG [G 59.6] und SRINIVASAN-NARASIMHAN [S 59.12] vorgenommen |
Beschreibung: | 1 Online-Ressource (77 S.) |
ISBN: | 9783322986368 9783322980090 |
DOI: | 10.1007/978-3-322-98636-8 |
Internformat
MARC
LEADER | 00000nmm a2200000zcb4500 | ||
---|---|---|---|
001 | BV042461264 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 150325s1964 |||| o||u| ||||||ger d | ||
020 | |a 9783322986368 |c Online |9 978-3-322-98636-8 | ||
020 | |a 9783322980090 |c Print |9 978-3-322-98009-0 | ||
024 | 7 | |a 10.1007/978-3-322-98636-8 |2 doi | |
035 | |a (OCoLC)915609546 | ||
035 | |a (DE-599)BVBBV042461264 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a ger | |
049 | |a DE-634 |a DE-188 |a DE-860 |a DE-706 | ||
082 | 0 | |a 510 |2 23 | |
100 | 1 | |a Böhling, Karl-Heinz |e Verfasser |4 aut | |
245 | 1 | 0 | |a Zur Strukturtheorie sequentieller Automaten |c von Karl-Heinz Böhling |
264 | 1 | |a Wiesbaden |b VS Verlag für Sozialwissenschaften |c 1964 | |
300 | |a 1 Online-Ressource (77 S.) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a Forschungsberichte des Landes Nordrhein-Westfalen |v 1279 | |
500 | |a 1.1. Überblick über die in der Literatur benutzten abstrakten Modelle sequentieller Automaten 1955 Modelle abstrakter sequentieller Maschinen treten erstmalig bei MOORE [M 56.6] und MEALY [M 55.1] auf. Sie sind gekennzeichnet durch eine endliche Anzahl von Zuständen, Eingangs-Symbolen und Ausgangs Symbolen. Das Modell von MOORE ist ein System von streng deterministischem Ver halten, in dem der augenblickliche Zustand der Maschine nur von dem vorhergehenden Eingangs-Symbol und dem vorhergehenden Zustand, das augenblickliche Ausgangs-Symbol nur von dem augenblicklichen Zustand abhängt. Bei dem Modell von MEALY sind das augenblickliche Ausgangs Symbol und der nächste Zustand eindeutig durch das augenblickliche Ein gangs-Symbol und den augenblicklichen Zustand bestimmt. Die Darstellung dieser Beziehungen erfolgt durch Tabellen und Zustands diagramme. 1957 Eine formalere Definition sequentieller Automaten findet man bei BURKS [B 57.1]. Eingangs-, Ausgangs-Symbole und Zustände werden auf natür liche Zahlen abgebildet. Die Zeit wird durch die Menge aller natürlichen Zahlen erfaßt. Man hat Mengen von natürlichen Zahlen X, Y, S, deren funktioneller Zusammenhang gegeben ist durch S (t+1)=g [x (t), S (t)] Y (t)=J[x (t), S (t)], dem Modell von MEALY entsprechend. AUFENKAMP [A 57.2] wählt eine Darstellung mit Transitions-Matrizen (g entsprechend) und Ausgangs-Matrizen Cf entsprechend) bzw. mit qua dratischen Verbindungs-Matrizen von Paaren (x,y) A XE X AYE Y über den Zuständen SES. 1958 Eine Erweiterung der funktionellen Beziehungen zwischen X, Yund Sauf 1959 Folgen von Eingangs-bzw. Ausgangs-Symbolen wird bei RANEY [R 58.7], GINSBURG [G 59.6] und SRINIVASAN-NARASIMHAN [S 59.12] vorgenommen | ||
650 | 4 | |a Mathematics | |
650 | 4 | |a Mathematics, general | |
650 | 4 | |a Mathematik | |
650 | 0 | 7 | |a Automatentheorie |0 (DE-588)4003953-5 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Automatentheorie |0 (DE-588)4003953-5 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
856 | 4 | 0 | |u https://doi.org/10.1007/978-3-322-98636-8 |x Verlag |3 Volltext |
912 | |a ZDB-2-SGR |a ZDB-2-BAD | ||
940 | 1 | |q ZDB-2-SGR_Archive | |
940 | 1 | |q ZDB-2-SGR_1815/1989 | |
999 | |a oai:aleph.bib-bvb.de:BVB01-027896471 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
966 | e | |u https://doi.org/10.1007/978-3-322-98636-8 |l FLA01 |p ZDB-2-SGR |x Verlag |3 Volltext |
Datensatz im Suchindex
_version_ | 1804153174606479360 |
---|---|
any_adam_object | |
author | Böhling, Karl-Heinz |
author_facet | Böhling, Karl-Heinz |
author_role | aut |
author_sort | Böhling, Karl-Heinz |
author_variant | k h b khb |
building | Verbundindex |
bvnumber | BV042461264 |
collection | ZDB-2-SGR ZDB-2-BAD |
ctrlnum | (OCoLC)915609546 (DE-599)BVBBV042461264 |
dewey-full | 510 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 510 - Mathematics |
dewey-raw | 510 |
dewey-search | 510 |
dewey-sort | 3510 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
doi_str_mv | 10.1007/978-3-322-98636-8 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03356nmm a2200457zcb4500</leader><controlfield tag="001">BV042461264</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">150325s1964 |||| o||u| ||||||ger d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783322986368</subfield><subfield code="c">Online</subfield><subfield code="9">978-3-322-98636-8</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783322980090</subfield><subfield code="c">Print</subfield><subfield code="9">978-3-322-98009-0</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/978-3-322-98636-8</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)915609546</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV042461264</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">ger</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-634</subfield><subfield code="a">DE-188</subfield><subfield code="a">DE-860</subfield><subfield code="a">DE-706</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">510</subfield><subfield code="2">23</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Böhling, Karl-Heinz</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Zur Strukturtheorie sequentieller Automaten</subfield><subfield code="c">von Karl-Heinz Böhling</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Wiesbaden</subfield><subfield code="b">VS Verlag für Sozialwissenschaften</subfield><subfield code="c">1964</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (77 S.)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Forschungsberichte des Landes Nordrhein-Westfalen</subfield><subfield code="v">1279</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">1.1. Überblick über die in der Literatur benutzten abstrakten Modelle sequentieller Automaten 1955 Modelle abstrakter sequentieller Maschinen treten erstmalig bei MOORE [M 56.6] und MEALY [M 55.1] auf. Sie sind gekennzeichnet durch eine endliche Anzahl von Zuständen, Eingangs-Symbolen und Ausgangs Symbolen. Das Modell von MOORE ist ein System von streng deterministischem Ver halten, in dem der augenblickliche Zustand der Maschine nur von dem vorhergehenden Eingangs-Symbol und dem vorhergehenden Zustand, das augenblickliche Ausgangs-Symbol nur von dem augenblicklichen Zustand abhängt. Bei dem Modell von MEALY sind das augenblickliche Ausgangs Symbol und der nächste Zustand eindeutig durch das augenblickliche Ein gangs-Symbol und den augenblicklichen Zustand bestimmt. Die Darstellung dieser Beziehungen erfolgt durch Tabellen und Zustands diagramme. 1957 Eine formalere Definition sequentieller Automaten findet man bei BURKS [B 57.1]. Eingangs-, Ausgangs-Symbole und Zustände werden auf natür liche Zahlen abgebildet. Die Zeit wird durch die Menge aller natürlichen Zahlen erfaßt. Man hat Mengen von natürlichen Zahlen X, Y, S, deren funktioneller Zusammenhang gegeben ist durch S (t+1)=g [x (t), S (t)] Y (t)=J[x (t), S (t)], dem Modell von MEALY entsprechend. AUFENKAMP [A 57.2] wählt eine Darstellung mit Transitions-Matrizen (g entsprechend) und Ausgangs-Matrizen Cf entsprechend) bzw. mit qua dratischen Verbindungs-Matrizen von Paaren (x,y) A XE X AYE Y über den Zuständen SES. 1958 Eine Erweiterung der funktionellen Beziehungen zwischen X, Yund Sauf 1959 Folgen von Eingangs-bzw. Ausgangs-Symbolen wird bei RANEY [R 58.7], GINSBURG [G 59.6] und SRINIVASAN-NARASIMHAN [S 59.12] vorgenommen</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematics, general</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematik</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Automatentheorie</subfield><subfield code="0">(DE-588)4003953-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Automatentheorie</subfield><subfield code="0">(DE-588)4003953-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1007/978-3-322-98636-8</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-2-SGR</subfield><subfield code="a">ZDB-2-BAD</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">ZDB-2-SGR_Archive</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">ZDB-2-SGR_1815/1989</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-027896471</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-3-322-98636-8</subfield><subfield code="l">FLA01</subfield><subfield code="p">ZDB-2-SGR</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV042461264 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T01:22:25Z |
institution | BVB |
isbn | 9783322986368 9783322980090 |
language | German |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-027896471 |
oclc_num | 915609546 |
open_access_boolean | |
owner | DE-634 DE-188 DE-860 DE-706 |
owner_facet | DE-634 DE-188 DE-860 DE-706 |
physical | 1 Online-Ressource (77 S.) |
psigel | ZDB-2-SGR ZDB-2-BAD ZDB-2-SGR_Archive ZDB-2-SGR_1815/1989 |
publishDate | 1964 |
publishDateSearch | 1964 |
publishDateSort | 1964 |
publisher | VS Verlag für Sozialwissenschaften |
record_format | marc |
series2 | Forschungsberichte des Landes Nordrhein-Westfalen |
spelling | Böhling, Karl-Heinz Verfasser aut Zur Strukturtheorie sequentieller Automaten von Karl-Heinz Böhling Wiesbaden VS Verlag für Sozialwissenschaften 1964 1 Online-Ressource (77 S.) txt rdacontent c rdamedia cr rdacarrier Forschungsberichte des Landes Nordrhein-Westfalen 1279 1.1. Überblick über die in der Literatur benutzten abstrakten Modelle sequentieller Automaten 1955 Modelle abstrakter sequentieller Maschinen treten erstmalig bei MOORE [M 56.6] und MEALY [M 55.1] auf. Sie sind gekennzeichnet durch eine endliche Anzahl von Zuständen, Eingangs-Symbolen und Ausgangs Symbolen. Das Modell von MOORE ist ein System von streng deterministischem Ver halten, in dem der augenblickliche Zustand der Maschine nur von dem vorhergehenden Eingangs-Symbol und dem vorhergehenden Zustand, das augenblickliche Ausgangs-Symbol nur von dem augenblicklichen Zustand abhängt. Bei dem Modell von MEALY sind das augenblickliche Ausgangs Symbol und der nächste Zustand eindeutig durch das augenblickliche Ein gangs-Symbol und den augenblicklichen Zustand bestimmt. Die Darstellung dieser Beziehungen erfolgt durch Tabellen und Zustands diagramme. 1957 Eine formalere Definition sequentieller Automaten findet man bei BURKS [B 57.1]. Eingangs-, Ausgangs-Symbole und Zustände werden auf natür liche Zahlen abgebildet. Die Zeit wird durch die Menge aller natürlichen Zahlen erfaßt. Man hat Mengen von natürlichen Zahlen X, Y, S, deren funktioneller Zusammenhang gegeben ist durch S (t+1)=g [x (t), S (t)] Y (t)=J[x (t), S (t)], dem Modell von MEALY entsprechend. AUFENKAMP [A 57.2] wählt eine Darstellung mit Transitions-Matrizen (g entsprechend) und Ausgangs-Matrizen Cf entsprechend) bzw. mit qua dratischen Verbindungs-Matrizen von Paaren (x,y) A XE X AYE Y über den Zuständen SES. 1958 Eine Erweiterung der funktionellen Beziehungen zwischen X, Yund Sauf 1959 Folgen von Eingangs-bzw. Ausgangs-Symbolen wird bei RANEY [R 58.7], GINSBURG [G 59.6] und SRINIVASAN-NARASIMHAN [S 59.12] vorgenommen Mathematics Mathematics, general Mathematik Automatentheorie (DE-588)4003953-5 gnd rswk-swf Automatentheorie (DE-588)4003953-5 s 1\p DE-604 https://doi.org/10.1007/978-3-322-98636-8 Verlag Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Böhling, Karl-Heinz Zur Strukturtheorie sequentieller Automaten Mathematics Mathematics, general Mathematik Automatentheorie (DE-588)4003953-5 gnd |
subject_GND | (DE-588)4003953-5 |
title | Zur Strukturtheorie sequentieller Automaten |
title_auth | Zur Strukturtheorie sequentieller Automaten |
title_exact_search | Zur Strukturtheorie sequentieller Automaten |
title_full | Zur Strukturtheorie sequentieller Automaten von Karl-Heinz Böhling |
title_fullStr | Zur Strukturtheorie sequentieller Automaten von Karl-Heinz Böhling |
title_full_unstemmed | Zur Strukturtheorie sequentieller Automaten von Karl-Heinz Böhling |
title_short | Zur Strukturtheorie sequentieller Automaten |
title_sort | zur strukturtheorie sequentieller automaten |
topic | Mathematics Mathematics, general Mathematik Automatentheorie (DE-588)4003953-5 gnd |
topic_facet | Mathematics Mathematics, general Mathematik Automatentheorie |
url | https://doi.org/10.1007/978-3-322-98636-8 |
work_keys_str_mv | AT bohlingkarlheinz zurstrukturtheoriesequentiellerautomaten |