Zur algebraischen Kennzeichnung der Monome über einem Vektorraum:
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | German |
Veröffentlicht: |
Wiesbaden
VS Verlag für Sozialwissenschaften
1966
|
Schriftenreihe: | Forschungsberichte des Landes Nordrhein-Westfalen
1741 |
Schlagworte: | |
Online-Zugang: | FLA01 Volltext |
Beschreibung: | Ausgangspunkt dieser Arbeit ist das folgende Problem: Gegeben sind zwei Vektorräume E und F über einem Skalarkörper L der Charakteristik Null!. Ist J eine Abbildung von Ep (p ~ 0) in F, so sage ich von der durch j(x) = J(x, . . . , x) p-mal definierten Abbildung j von Ein F, sie sei durch Variablenidentifikation aus J entstanden. Genau die Funktionen g E FE, welche durch Variablenidentifikation aus multilinearen Abbildungen von Ein F entstehen, bezeichne ich als F-Monome über E2, 3. Die Stellenzahl einer multilinearen AbbildungJ, aus der ein Monomg durch Variablenidentifikation entsteht, heißt Grad des Monoms. Da g =J homogen vom Grade p ist, falls J p-linear ist, so bestimmt ein Monom g =f= 0 4 offenbar eindeutig seinen Grad • Das Nullmonom dagegen hat jede natürliche Zahl als Grad. Die Monome vom Grade Null sind gerade die einstelligen Konstanten über E, denn die nullinearen Abbildungen sind genau die nullstelligen Konstanten über E, d. h. die auf EO = {I/J} definierten Funktionen. Die Monome p-ten Grades bilden einen Vektorraum (über L), den ich mit IDlp(E, F) bezeichne. Gelegentlich - vorzugsweise dann, wenn F der Skalar- 1 Ich werde die Benutzung dieser Voraussetzung über die Charakteristik im folgenden stets durch eine Fußnote anmerken. 2 Diese Definition findet sich bei J. SCHMIDT in [11], S. 136. HILLE legt in [3], S. |
Beschreibung: | 1 Online-Ressource (33 S.) |
ISBN: | 9783322985101 9783322979452 |
DOI: | 10.1007/978-3-322-98510-1 |
Internformat
MARC
LEADER | 00000nmm a2200000zcb4500 | ||
---|---|---|---|
001 | BV042461210 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 150325s1966 |||| o||u| ||||||ger d | ||
020 | |a 9783322985101 |c Online |9 978-3-322-98510-1 | ||
020 | |a 9783322979452 |c Print |9 978-3-322-97945-2 | ||
024 | 7 | |a 10.1007/978-3-322-98510-1 |2 doi | |
035 | |a (OCoLC)864028685 | ||
035 | |a (DE-599)BVBBV042461210 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a ger | |
049 | |a DE-634 |a DE-188 |a DE-860 |a DE-706 | ||
082 | 0 | |a 510 |2 23 | |
100 | 1 | |a Hutter, Wolfgang |e Verfasser |4 aut | |
245 | 1 | 0 | |a Zur algebraischen Kennzeichnung der Monome über einem Vektorraum |c von Wolfgang Hutter |
264 | 1 | |a Wiesbaden |b VS Verlag für Sozialwissenschaften |c 1966 | |
300 | |a 1 Online-Ressource (33 S.) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a Forschungsberichte des Landes Nordrhein-Westfalen |v 1741 | |
500 | |a Ausgangspunkt dieser Arbeit ist das folgende Problem: Gegeben sind zwei Vektorräume E und F über einem Skalarkörper L der Charakteristik Null!. Ist J eine Abbildung von Ep (p ~ 0) in F, so sage ich von der durch j(x) = J(x, . . . , x) p-mal definierten Abbildung j von Ein F, sie sei durch Variablenidentifikation aus J entstanden. Genau die Funktionen g E FE, welche durch Variablenidentifikation aus multilinearen Abbildungen von Ein F entstehen, bezeichne ich als F-Monome über E2, 3. Die Stellenzahl einer multilinearen AbbildungJ, aus der ein Monomg durch Variablenidentifikation entsteht, heißt Grad des Monoms. Da g =J homogen vom Grade p ist, falls J p-linear ist, so bestimmt ein Monom g =f= 0 4 offenbar eindeutig seinen Grad • Das Nullmonom dagegen hat jede natürliche Zahl als Grad. Die Monome vom Grade Null sind gerade die einstelligen Konstanten über E, denn die nullinearen Abbildungen sind genau die nullstelligen Konstanten über E, d. h. die auf EO = {I/J} definierten Funktionen. Die Monome p-ten Grades bilden einen Vektorraum (über L), den ich mit IDlp(E, F) bezeichne. Gelegentlich - vorzugsweise dann, wenn F der Skalar- 1 Ich werde die Benutzung dieser Voraussetzung über die Charakteristik im folgenden stets durch eine Fußnote anmerken. 2 Diese Definition findet sich bei J. SCHMIDT in [11], S. 136. HILLE legt in [3], S. | ||
650 | 4 | |a Mathematics | |
650 | 4 | |a Mathematics, general | |
650 | 4 | |a Mathematik | |
650 | 0 | 7 | |a Vektorraum |0 (DE-588)4130622-3 |2 gnd |9 rswk-swf |
655 | 7 | |8 1\p |0 (DE-588)4113937-9 |a Hochschulschrift |2 gnd-content | |
689 | 0 | 0 | |a Vektorraum |0 (DE-588)4130622-3 |D s |
689 | 0 | |8 2\p |5 DE-604 | |
856 | 4 | 0 | |u https://doi.org/10.1007/978-3-322-98510-1 |x Verlag |3 Volltext |
912 | |a ZDB-2-SGR |a ZDB-2-BAD | ||
940 | 1 | |q ZDB-2-SGR_Archive | |
940 | 1 | |q ZDB-2-SGR_1815/1989 | |
999 | |a oai:aleph.bib-bvb.de:BVB01-027896417 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 2\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
966 | e | |u https://doi.org/10.1007/978-3-322-98510-1 |l FLA01 |p ZDB-2-SGR |x Verlag |3 Volltext |
Datensatz im Suchindex
_version_ | 1804153174483795968 |
---|---|
any_adam_object | |
author | Hutter, Wolfgang |
author_facet | Hutter, Wolfgang |
author_role | aut |
author_sort | Hutter, Wolfgang |
author_variant | w h wh |
building | Verbundindex |
bvnumber | BV042461210 |
collection | ZDB-2-SGR ZDB-2-BAD |
ctrlnum | (OCoLC)864028685 (DE-599)BVBBV042461210 |
dewey-full | 510 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 510 - Mathematics |
dewey-raw | 510 |
dewey-search | 510 |
dewey-sort | 3510 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
doi_str_mv | 10.1007/978-3-322-98510-1 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03141nmm a2200481zcb4500</leader><controlfield tag="001">BV042461210</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">150325s1966 |||| o||u| ||||||ger d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783322985101</subfield><subfield code="c">Online</subfield><subfield code="9">978-3-322-98510-1</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783322979452</subfield><subfield code="c">Print</subfield><subfield code="9">978-3-322-97945-2</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/978-3-322-98510-1</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)864028685</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV042461210</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">ger</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-634</subfield><subfield code="a">DE-188</subfield><subfield code="a">DE-860</subfield><subfield code="a">DE-706</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">510</subfield><subfield code="2">23</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Hutter, Wolfgang</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Zur algebraischen Kennzeichnung der Monome über einem Vektorraum</subfield><subfield code="c">von Wolfgang Hutter</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Wiesbaden</subfield><subfield code="b">VS Verlag für Sozialwissenschaften</subfield><subfield code="c">1966</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (33 S.)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Forschungsberichte des Landes Nordrhein-Westfalen</subfield><subfield code="v">1741</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Ausgangspunkt dieser Arbeit ist das folgende Problem: Gegeben sind zwei Vektorräume E und F über einem Skalarkörper L der Charakteristik Null!. Ist J eine Abbildung von Ep (p ~ 0) in F, so sage ich von der durch j(x) = J(x, . . . , x) p-mal definierten Abbildung j von Ein F, sie sei durch Variablenidentifikation aus J entstanden. Genau die Funktionen g E FE, welche durch Variablenidentifikation aus multilinearen Abbildungen von Ein F entstehen, bezeichne ich als F-Monome über E2, 3. Die Stellenzahl einer multilinearen AbbildungJ, aus der ein Monomg durch Variablenidentifikation entsteht, heißt Grad des Monoms. Da g =J homogen vom Grade p ist, falls J p-linear ist, so bestimmt ein Monom g =f= 0 4 offenbar eindeutig seinen Grad • Das Nullmonom dagegen hat jede natürliche Zahl als Grad. Die Monome vom Grade Null sind gerade die einstelligen Konstanten über E, denn die nullinearen Abbildungen sind genau die nullstelligen Konstanten über E, d. h. die auf EO = {I/J} definierten Funktionen. Die Monome p-ten Grades bilden einen Vektorraum (über L), den ich mit IDlp(E, F) bezeichne. Gelegentlich - vorzugsweise dann, wenn F der Skalar- 1 Ich werde die Benutzung dieser Voraussetzung über die Charakteristik im folgenden stets durch eine Fußnote anmerken. 2 Diese Definition findet sich bei J. SCHMIDT in [11], S. 136. HILLE legt in [3], S.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematics, general</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematik</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Vektorraum</subfield><subfield code="0">(DE-588)4130622-3</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="655" ind1=" " ind2="7"><subfield code="8">1\p</subfield><subfield code="0">(DE-588)4113937-9</subfield><subfield code="a">Hochschulschrift</subfield><subfield code="2">gnd-content</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Vektorraum</subfield><subfield code="0">(DE-588)4130622-3</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">2\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1007/978-3-322-98510-1</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-2-SGR</subfield><subfield code="a">ZDB-2-BAD</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">ZDB-2-SGR_Archive</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">ZDB-2-SGR_1815/1989</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-027896417</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-3-322-98510-1</subfield><subfield code="l">FLA01</subfield><subfield code="p">ZDB-2-SGR</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
genre | 1\p (DE-588)4113937-9 Hochschulschrift gnd-content |
genre_facet | Hochschulschrift |
id | DE-604.BV042461210 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T01:22:25Z |
institution | BVB |
isbn | 9783322985101 9783322979452 |
language | German |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-027896417 |
oclc_num | 864028685 |
open_access_boolean | |
owner | DE-634 DE-188 DE-860 DE-706 |
owner_facet | DE-634 DE-188 DE-860 DE-706 |
physical | 1 Online-Ressource (33 S.) |
psigel | ZDB-2-SGR ZDB-2-BAD ZDB-2-SGR_Archive ZDB-2-SGR_1815/1989 |
publishDate | 1966 |
publishDateSearch | 1966 |
publishDateSort | 1966 |
publisher | VS Verlag für Sozialwissenschaften |
record_format | marc |
series2 | Forschungsberichte des Landes Nordrhein-Westfalen |
spelling | Hutter, Wolfgang Verfasser aut Zur algebraischen Kennzeichnung der Monome über einem Vektorraum von Wolfgang Hutter Wiesbaden VS Verlag für Sozialwissenschaften 1966 1 Online-Ressource (33 S.) txt rdacontent c rdamedia cr rdacarrier Forschungsberichte des Landes Nordrhein-Westfalen 1741 Ausgangspunkt dieser Arbeit ist das folgende Problem: Gegeben sind zwei Vektorräume E und F über einem Skalarkörper L der Charakteristik Null!. Ist J eine Abbildung von Ep (p ~ 0) in F, so sage ich von der durch j(x) = J(x, . . . , x) p-mal definierten Abbildung j von Ein F, sie sei durch Variablenidentifikation aus J entstanden. Genau die Funktionen g E FE, welche durch Variablenidentifikation aus multilinearen Abbildungen von Ein F entstehen, bezeichne ich als F-Monome über E2, 3. Die Stellenzahl einer multilinearen AbbildungJ, aus der ein Monomg durch Variablenidentifikation entsteht, heißt Grad des Monoms. Da g =J homogen vom Grade p ist, falls J p-linear ist, so bestimmt ein Monom g =f= 0 4 offenbar eindeutig seinen Grad • Das Nullmonom dagegen hat jede natürliche Zahl als Grad. Die Monome vom Grade Null sind gerade die einstelligen Konstanten über E, denn die nullinearen Abbildungen sind genau die nullstelligen Konstanten über E, d. h. die auf EO = {I/J} definierten Funktionen. Die Monome p-ten Grades bilden einen Vektorraum (über L), den ich mit IDlp(E, F) bezeichne. Gelegentlich - vorzugsweise dann, wenn F der Skalar- 1 Ich werde die Benutzung dieser Voraussetzung über die Charakteristik im folgenden stets durch eine Fußnote anmerken. 2 Diese Definition findet sich bei J. SCHMIDT in [11], S. 136. HILLE legt in [3], S. Mathematics Mathematics, general Mathematik Vektorraum (DE-588)4130622-3 gnd rswk-swf 1\p (DE-588)4113937-9 Hochschulschrift gnd-content Vektorraum (DE-588)4130622-3 s 2\p DE-604 https://doi.org/10.1007/978-3-322-98510-1 Verlag Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 2\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Hutter, Wolfgang Zur algebraischen Kennzeichnung der Monome über einem Vektorraum Mathematics Mathematics, general Mathematik Vektorraum (DE-588)4130622-3 gnd |
subject_GND | (DE-588)4130622-3 (DE-588)4113937-9 |
title | Zur algebraischen Kennzeichnung der Monome über einem Vektorraum |
title_auth | Zur algebraischen Kennzeichnung der Monome über einem Vektorraum |
title_exact_search | Zur algebraischen Kennzeichnung der Monome über einem Vektorraum |
title_full | Zur algebraischen Kennzeichnung der Monome über einem Vektorraum von Wolfgang Hutter |
title_fullStr | Zur algebraischen Kennzeichnung der Monome über einem Vektorraum von Wolfgang Hutter |
title_full_unstemmed | Zur algebraischen Kennzeichnung der Monome über einem Vektorraum von Wolfgang Hutter |
title_short | Zur algebraischen Kennzeichnung der Monome über einem Vektorraum |
title_sort | zur algebraischen kennzeichnung der monome uber einem vektorraum |
topic | Mathematics Mathematics, general Mathematik Vektorraum (DE-588)4130622-3 gnd |
topic_facet | Mathematics Mathematics, general Mathematik Vektorraum Hochschulschrift |
url | https://doi.org/10.1007/978-3-322-98510-1 |
work_keys_str_mv | AT hutterwolfgang zuralgebraischenkennzeichnungdermonomeubereinemvektorraum |