Wahrscheinlichkeitstheorie: Eine Einführung
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | German |
Veröffentlicht: |
Basel
Birkhäuser Basel
1976
|
Schriftenreihe: | Mathematische Reihe
53 |
Schlagworte: | |
Online-Zugang: | FLA01 Volltext |
Beschreibung: | 1. Die Anfänge der Wahrscheinlichkeitstheorie reichen bis ins XVII. J ahr hundert zurück und hängen mit den kombinatorischen Aufgaben der Glücks spiele zusammen. Es fällt einem schwer, Glücksspiele als ernsthafte Beschäfti gung anzusehen. Jedoch gerade sie führten zu Aufgaben, die den Rahmen der damals vorhandenen mathematischen Modelle sprengten. Sie stimulierten die Einführung neuer Begriffe, Verfahren und Ideen. Diese neuen Elemente des mathematischen Denkens findet man bereits bei J. BERNOULLI, LAPLAoE, GAUSS u. a. Die Namen dieser Mathematiker zieren zweifellos den Stammbaum der Wahrscheinlichkeitstheorie, der im gewissen Sinne mit einigen Lastern der Gesellschaft zusammenhängt. Es hat sich jedoch erwiesen, daß gerade dieser Umstand der Wahrscheinlichkeitstheorie in manchen Augen eine zusätzliche Anziehungskraft verleihen kann. Am Ende des vergangenen und zu Beginn dieses Jahrhunderts traten ernst hafte, durch die Bedürfnisse der Naturwissenschaften geprägte Forderungen auf, die zur Entwicklung einer umfangreichen und relativ selbständigen mathemati schen Disziplin, die man heute als Wahrscheinlichkeitstheorie bezeichnet, ge führt haben. Dieses Wissensgebiet befindet sich bis zur Gegenwart im Zustand einer intensiven Entwicklung. Der Umstand, daß die Zunahme unseres Wissens über die Natur ständig neue Forderungen an die Wahrscheinlichkeitstheorie stellt, erschient auf den ersten Blick paradox. Der Leser wird vermutlich bereits wissen, daß das Grundobjekt der Wahrscheinlichkeitstheorie der Zufall oder die in der Regel mit dem Un wissen zusammenhängende Unbestimmtheit ist. Gerade so verhält es sich im klassischen Beispiel - Werfen einer Münze, wo es uns schwer fällt, alle Faktoren, die die Lage der Münze nach ihrem Fall bestimmen, zu berücksichtigen |
Beschreibung: | 1 Online-Ressource (XI, 264 S.) |
ISBN: | 9783034854979 9783034854986 |
DOI: | 10.1007/978-3-0348-5497-9 |
Internformat
MARC
LEADER | 00000nmm a2200000zcb4500 | ||
---|---|---|---|
001 | BV042455753 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 150325s1976 |||| o||u| ||||||ger d | ||
020 | |a 9783034854979 |c Online |9 978-3-0348-5497-9 | ||
020 | |a 9783034854986 |c Print |9 978-3-0348-5498-6 | ||
024 | 7 | |a 10.1007/978-3-0348-5497-9 |2 doi | |
035 | |a (OCoLC)915596127 | ||
035 | |a (DE-599)BVBBV042455753 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a ger | |
049 | |a DE-634 |a DE-188 |a DE-860 |a DE-706 | ||
082 | 0 | |a 50 |2 23 | |
100 | 1 | |a Borowkow, A. A. |e Verfasser |4 aut | |
245 | 1 | 0 | |a Wahrscheinlichkeitstheorie |b Eine Einführung |c von A. A. Borowkow |
264 | 1 | |a Basel |b Birkhäuser Basel |c 1976 | |
300 | |a 1 Online-Ressource (XI, 264 S.) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a Mathematische Reihe |v 53 | |
500 | |a 1. Die Anfänge der Wahrscheinlichkeitstheorie reichen bis ins XVII. J ahr hundert zurück und hängen mit den kombinatorischen Aufgaben der Glücks spiele zusammen. Es fällt einem schwer, Glücksspiele als ernsthafte Beschäfti gung anzusehen. Jedoch gerade sie führten zu Aufgaben, die den Rahmen der damals vorhandenen mathematischen Modelle sprengten. Sie stimulierten die Einführung neuer Begriffe, Verfahren und Ideen. Diese neuen Elemente des mathematischen Denkens findet man bereits bei J. BERNOULLI, LAPLAoE, GAUSS u. a. Die Namen dieser Mathematiker zieren zweifellos den Stammbaum der Wahrscheinlichkeitstheorie, der im gewissen Sinne mit einigen Lastern der Gesellschaft zusammenhängt. Es hat sich jedoch erwiesen, daß gerade dieser Umstand der Wahrscheinlichkeitstheorie in manchen Augen eine zusätzliche Anziehungskraft verleihen kann. Am Ende des vergangenen und zu Beginn dieses Jahrhunderts traten ernst hafte, durch die Bedürfnisse der Naturwissenschaften geprägte Forderungen auf, die zur Entwicklung einer umfangreichen und relativ selbständigen mathemati schen Disziplin, die man heute als Wahrscheinlichkeitstheorie bezeichnet, ge führt haben. Dieses Wissensgebiet befindet sich bis zur Gegenwart im Zustand einer intensiven Entwicklung. Der Umstand, daß die Zunahme unseres Wissens über die Natur ständig neue Forderungen an die Wahrscheinlichkeitstheorie stellt, erschient auf den ersten Blick paradox. Der Leser wird vermutlich bereits wissen, daß das Grundobjekt der Wahrscheinlichkeitstheorie der Zufall oder die in der Regel mit dem Un wissen zusammenhängende Unbestimmtheit ist. Gerade so verhält es sich im klassischen Beispiel - Werfen einer Münze, wo es uns schwer fällt, alle Faktoren, die die Lage der Münze nach ihrem Fall bestimmen, zu berücksichtigen | ||
650 | 4 | |a Science (General) | |
650 | 4 | |a Science, general | |
650 | 4 | |a Naturwissenschaft | |
856 | 4 | 0 | |u https://doi.org/10.1007/978-3-0348-5497-9 |x Verlag |3 Volltext |
912 | |a ZDB-2-SGR |a ZDB-2-BAD | ||
940 | 1 | |q ZDB-2-SGR_Archive | |
940 | 1 | |q ZDB-2-SGR_1815/1989 | |
999 | |a oai:aleph.bib-bvb.de:BVB01-027890960 | ||
966 | e | |u https://doi.org/10.1007/978-3-0348-5497-9 |l FLA01 |p ZDB-2-SGR |x Verlag |3 Volltext |
Datensatz im Suchindex
_version_ | 1804153162328702976 |
---|---|
any_adam_object | |
author | Borowkow, A. A. |
author_facet | Borowkow, A. A. |
author_role | aut |
author_sort | Borowkow, A. A. |
author_variant | a a b aa aab |
building | Verbundindex |
bvnumber | BV042455753 |
collection | ZDB-2-SGR ZDB-2-BAD |
ctrlnum | (OCoLC)915596127 (DE-599)BVBBV042455753 |
dewey-full | 50 |
dewey-hundreds | 000 - Computer science, information, general works |
dewey-ones | 050 - General serial publications |
dewey-raw | 50 |
dewey-search | 50 |
dewey-sort | 250 |
dewey-tens | 050 - General serial publications |
discipline | Allgemeine Naturwissenschaft |
doi_str_mv | 10.1007/978-3-0348-5497-9 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03159nmm a2200409zcb4500</leader><controlfield tag="001">BV042455753</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">150325s1976 |||| o||u| ||||||ger d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783034854979</subfield><subfield code="c">Online</subfield><subfield code="9">978-3-0348-5497-9</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783034854986</subfield><subfield code="c">Print</subfield><subfield code="9">978-3-0348-5498-6</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/978-3-0348-5497-9</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)915596127</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV042455753</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">ger</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-634</subfield><subfield code="a">DE-188</subfield><subfield code="a">DE-860</subfield><subfield code="a">DE-706</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">50</subfield><subfield code="2">23</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Borowkow, A. A.</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Wahrscheinlichkeitstheorie</subfield><subfield code="b">Eine Einführung</subfield><subfield code="c">von A. A. Borowkow</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Basel</subfield><subfield code="b">Birkhäuser Basel</subfield><subfield code="c">1976</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (XI, 264 S.)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Mathematische Reihe</subfield><subfield code="v">53</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">1. Die Anfänge der Wahrscheinlichkeitstheorie reichen bis ins XVII. J ahr hundert zurück und hängen mit den kombinatorischen Aufgaben der Glücks spiele zusammen. Es fällt einem schwer, Glücksspiele als ernsthafte Beschäfti gung anzusehen. Jedoch gerade sie führten zu Aufgaben, die den Rahmen der damals vorhandenen mathematischen Modelle sprengten. Sie stimulierten die Einführung neuer Begriffe, Verfahren und Ideen. Diese neuen Elemente des mathematischen Denkens findet man bereits bei J. BERNOULLI, LAPLAoE, GAUSS u. a. Die Namen dieser Mathematiker zieren zweifellos den Stammbaum der Wahrscheinlichkeitstheorie, der im gewissen Sinne mit einigen Lastern der Gesellschaft zusammenhängt. Es hat sich jedoch erwiesen, daß gerade dieser Umstand der Wahrscheinlichkeitstheorie in manchen Augen eine zusätzliche Anziehungskraft verleihen kann. Am Ende des vergangenen und zu Beginn dieses Jahrhunderts traten ernst hafte, durch die Bedürfnisse der Naturwissenschaften geprägte Forderungen auf, die zur Entwicklung einer umfangreichen und relativ selbständigen mathemati schen Disziplin, die man heute als Wahrscheinlichkeitstheorie bezeichnet, ge führt haben. Dieses Wissensgebiet befindet sich bis zur Gegenwart im Zustand einer intensiven Entwicklung. Der Umstand, daß die Zunahme unseres Wissens über die Natur ständig neue Forderungen an die Wahrscheinlichkeitstheorie stellt, erschient auf den ersten Blick paradox. Der Leser wird vermutlich bereits wissen, daß das Grundobjekt der Wahrscheinlichkeitstheorie der Zufall oder die in der Regel mit dem Un wissen zusammenhängende Unbestimmtheit ist. Gerade so verhält es sich im klassischen Beispiel - Werfen einer Münze, wo es uns schwer fällt, alle Faktoren, die die Lage der Münze nach ihrem Fall bestimmen, zu berücksichtigen</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Science (General)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Science, general</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Naturwissenschaft</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1007/978-3-0348-5497-9</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-2-SGR</subfield><subfield code="a">ZDB-2-BAD</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">ZDB-2-SGR_Archive</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">ZDB-2-SGR_1815/1989</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-027890960</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-3-0348-5497-9</subfield><subfield code="l">FLA01</subfield><subfield code="p">ZDB-2-SGR</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV042455753 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T01:22:13Z |
institution | BVB |
isbn | 9783034854979 9783034854986 |
language | German |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-027890960 |
oclc_num | 915596127 |
open_access_boolean | |
owner | DE-634 DE-188 DE-860 DE-706 |
owner_facet | DE-634 DE-188 DE-860 DE-706 |
physical | 1 Online-Ressource (XI, 264 S.) |
psigel | ZDB-2-SGR ZDB-2-BAD ZDB-2-SGR_Archive ZDB-2-SGR_1815/1989 |
publishDate | 1976 |
publishDateSearch | 1976 |
publishDateSort | 1976 |
publisher | Birkhäuser Basel |
record_format | marc |
series2 | Mathematische Reihe |
spelling | Borowkow, A. A. Verfasser aut Wahrscheinlichkeitstheorie Eine Einführung von A. A. Borowkow Basel Birkhäuser Basel 1976 1 Online-Ressource (XI, 264 S.) txt rdacontent c rdamedia cr rdacarrier Mathematische Reihe 53 1. Die Anfänge der Wahrscheinlichkeitstheorie reichen bis ins XVII. J ahr hundert zurück und hängen mit den kombinatorischen Aufgaben der Glücks spiele zusammen. Es fällt einem schwer, Glücksspiele als ernsthafte Beschäfti gung anzusehen. Jedoch gerade sie führten zu Aufgaben, die den Rahmen der damals vorhandenen mathematischen Modelle sprengten. Sie stimulierten die Einführung neuer Begriffe, Verfahren und Ideen. Diese neuen Elemente des mathematischen Denkens findet man bereits bei J. BERNOULLI, LAPLAoE, GAUSS u. a. Die Namen dieser Mathematiker zieren zweifellos den Stammbaum der Wahrscheinlichkeitstheorie, der im gewissen Sinne mit einigen Lastern der Gesellschaft zusammenhängt. Es hat sich jedoch erwiesen, daß gerade dieser Umstand der Wahrscheinlichkeitstheorie in manchen Augen eine zusätzliche Anziehungskraft verleihen kann. Am Ende des vergangenen und zu Beginn dieses Jahrhunderts traten ernst hafte, durch die Bedürfnisse der Naturwissenschaften geprägte Forderungen auf, die zur Entwicklung einer umfangreichen und relativ selbständigen mathemati schen Disziplin, die man heute als Wahrscheinlichkeitstheorie bezeichnet, ge führt haben. Dieses Wissensgebiet befindet sich bis zur Gegenwart im Zustand einer intensiven Entwicklung. Der Umstand, daß die Zunahme unseres Wissens über die Natur ständig neue Forderungen an die Wahrscheinlichkeitstheorie stellt, erschient auf den ersten Blick paradox. Der Leser wird vermutlich bereits wissen, daß das Grundobjekt der Wahrscheinlichkeitstheorie der Zufall oder die in der Regel mit dem Un wissen zusammenhängende Unbestimmtheit ist. Gerade so verhält es sich im klassischen Beispiel - Werfen einer Münze, wo es uns schwer fällt, alle Faktoren, die die Lage der Münze nach ihrem Fall bestimmen, zu berücksichtigen Science (General) Science, general Naturwissenschaft https://doi.org/10.1007/978-3-0348-5497-9 Verlag Volltext |
spellingShingle | Borowkow, A. A. Wahrscheinlichkeitstheorie Eine Einführung Science (General) Science, general Naturwissenschaft |
title | Wahrscheinlichkeitstheorie Eine Einführung |
title_auth | Wahrscheinlichkeitstheorie Eine Einführung |
title_exact_search | Wahrscheinlichkeitstheorie Eine Einführung |
title_full | Wahrscheinlichkeitstheorie Eine Einführung von A. A. Borowkow |
title_fullStr | Wahrscheinlichkeitstheorie Eine Einführung von A. A. Borowkow |
title_full_unstemmed | Wahrscheinlichkeitstheorie Eine Einführung von A. A. Borowkow |
title_short | Wahrscheinlichkeitstheorie |
title_sort | wahrscheinlichkeitstheorie eine einfuhrung |
title_sub | Eine Einführung |
topic | Science (General) Science, general Naturwissenschaft |
topic_facet | Science (General) Science, general Naturwissenschaft |
url | https://doi.org/10.1007/978-3-0348-5497-9 |
work_keys_str_mv | AT borowkowaa wahrscheinlichkeitstheorieeineeinfuhrung |