Existenz semiuniverseller Deformationen in der komplexen Analysis:
Gespeichert in:
Bibliographische Detailangaben
1. Verfasser: Stieber, Harald (VerfasserIn)
Format: Elektronisch E-Book
Sprache:German
Veröffentlicht: Wiesbaden Vieweg+Teubner Verlag 1988
Schriftenreihe:Aspects of Mathematics D 5
Schlagworte:
Online-Zugang:Volltext
Beschreibung:Jede komplexe Mannigfaltigkeit ist auf natürliche Weise eine differenzierbare Mannigfaltigkeit. Sei umgekehrt M eine differenzierbare Mannigfaltigkeit. Es erhebt sich die Frage, ob auf M eine komplexe Struktur existiert. Falls dies der Fall ist, besteht das nächste Problem darin, eine Übersicht über "alle" komplexen Strukturen auf M zu gewinnen. Sei L(M) :=Menge der Äquivalenzklassen von komplexen Strukturen auf M ~ Menge der zu M diffeomorphen, komplexen Mannigfaltkeiten/biholomorphe Äquivalenz. Das Modulproblem, das seinen Ursprung in der Arbeit [67] von B. Riernann hat, besteht darin, auf L(M) eine "natürliche" komplexe Struktur einzuführen. Beispiel 1. Im Falle, daß M = ~ ist, besteht L(M) aus zwei 1 Punkten, falls M = F ist, besteht L(M) nur aus einem Punkt (Riemannscher Abbildungssatz) . Beispiel 2. Sei w E ~ mit Im w > 0 und Gw:= {rnw+nlrn,nE~ }. Dann ist Tw := ~/Gw ein Torus. Zwei Tori Tw' und T sind w genau dann biholomorph zueinander, wenn ganze Zahlen a,b,c,d mit ad - bc = 1 existieren, so daß + b w' = aw cw + d ist. Jeder Torus hat also einen Repräsentanten T mit w wEr := {aE~ i Im Ct > 0, /Real :5. 2' Iai .::. 1} . VIII Identifiziert man entsprechende Punkte in r , so kann man zeigen, daß für jeden Torus T gilt r(T) ""a: * Man vergleiche dazu [39], Example 2.14. Beispiel 3. Satz (Riemann, Teichmüller, Rauch, Ahlfors, Bers)
Beschreibung:1 Online-Ressource (XXVII, 180 S.)
ISBN:9783663141280
9783528063207
DOI:10.1007/978-3-663-14128-0

Es ist kein Print-Exemplar vorhanden.

Fernleihe Bestellen Achtung: Nicht im THWS-Bestand! Volltext öffnen