Non-Local Methods for Pendulum-Like Feedback Systems:
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | German |
Veröffentlicht: |
Wiesbaden
Vieweg+Teubner Verlag
1992
|
Schriftenreihe: | TEUBNER-TEXTE zur Mathematik
|
Schlagworte: | |
Online-Zugang: | Volltext |
Beschreibung: | 0 are already deecribed by I. Newton (116]. However it was 250 years later that F. Tricorni (147] carried out the first non-local qualitative investigation of equation (0.1) with arbitrary o ~ 0 and "'{ ~ 0. It was proved by F. Tricorni that any solution of (0.1) with o > 0 corresponds either to a rotatory motion or to a damped oscillatory motion. Moreover, he showed that in the non-trivial case "'! :::; 1 there exists a bifurcation value ocr("'!) corresponding to a separatrix-loop, i.e. to a double-asymptotic to a saddle-point trajectory. For o < ocr("'!) equation (0.1) admits damped oscillations as weil as rotatory motions. For o > ocr("'') global asymptotic stability takes place, i.e. every motion is a damped oscillation. The papers of F. Tricorni became familiar immediately |
Beschreibung: | 1 Online-Ressource (VII, 242 S.) |
ISBN: | 9783663122616 9783663122623 |
ISSN: | 0138-502X |
DOI: | 10.1007/978-3-663-12261-6 |
Internformat
MARC
LEADER | 00000nmm a2200000zc 4500 | ||
---|---|---|---|
001 | BV042452204 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 150324s1992 |||| o||u| ||||||ger d | ||
020 | |a 9783663122616 |c Online |9 978-3-663-12261-6 | ||
020 | |a 9783663122623 |c Print |9 978-3-663-12262-3 | ||
024 | 7 | |a 10.1007/978-3-663-12261-6 |2 doi | |
035 | |a (OCoLC)858025984 | ||
035 | |a (DE-599)BVBBV042452204 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a ger | |
049 | |a DE-91 |a DE-634 |a DE-92 |a DE-706 | ||
082 | 0 | |a 620 |2 23 | |
084 | |a NAT 000 |2 stub | ||
100 | 1 | |a Leonov, Gennadij A. |e Verfasser |4 aut | |
245 | 1 | 0 | |a Non-Local Methods for Pendulum-Like Feedback Systems |c von Gennadij A. Leonov, Volker Reitmann, Vera B. Smirnova |
264 | 1 | |a Wiesbaden |b Vieweg+Teubner Verlag |c 1992 | |
300 | |a 1 Online-Ressource (VII, 242 S.) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a TEUBNER-TEXTE zur Mathematik |x 0138-502X | |
500 | |a 0 are already deecribed by I. Newton (116]. However it was 250 years later that F. Tricorni (147] carried out the first non-local qualitative investigation of equation (0.1) with arbitrary o ~ 0 and "'{ ~ 0. It was proved by F. Tricorni that any solution of (0.1) with o > 0 corresponds either to a rotatory motion or to a damped oscillatory motion. Moreover, he showed that in the non-trivial case "'! :::; 1 there exists a bifurcation value ocr("'!) corresponding to a separatrix-loop, i.e. to a double-asymptotic to a saddle-point trajectory. For o < ocr("'!) equation (0.1) admits damped oscillations as weil as rotatory motions. For o > ocr("'') global asymptotic stability takes place, i.e. every motion is a damped oscillation. The papers of F. Tricorni became familiar immediately | ||
650 | 4 | |a Engineering | |
650 | 4 | |a Engineering, general | |
650 | 4 | |a Ingenieurwissenschaften | |
650 | 0 | 7 | |a Regelungssystem |0 (DE-588)4134712-2 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Differentialgleichungssystem |0 (DE-588)4121137-6 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Phasenraum |0 (DE-588)4139912-2 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Zylinderbereich |0 (DE-588)4232981-4 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Verzweigung |g Mathematik |0 (DE-588)4078889-1 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Stabilität |0 (DE-588)4056693-6 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Ljapunov-Funktion |0 (DE-588)4274502-0 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Pendelgleichung |0 (DE-588)4322855-0 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Regelungssystem |0 (DE-588)4134712-2 |D s |
689 | 0 | 1 | |a Pendelgleichung |0 (DE-588)4322855-0 |D s |
689 | 0 | 2 | |a Stabilität |0 (DE-588)4056693-6 |D s |
689 | 0 | 3 | |a Verzweigung |g Mathematik |0 (DE-588)4078889-1 |D s |
689 | 0 | 4 | |a Ljapunov-Funktion |0 (DE-588)4274502-0 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
689 | 1 | 0 | |a Differentialgleichungssystem |0 (DE-588)4121137-6 |D s |
689 | 1 | 1 | |a Zylinderbereich |0 (DE-588)4232981-4 |D s |
689 | 1 | 2 | |a Phasenraum |0 (DE-588)4139912-2 |D s |
689 | 1 | |8 2\p |5 DE-604 | |
700 | 1 | |a Reitmann, Volker |e Sonstige |4 oth | |
700 | 1 | |a Smirnova, Vera B. |e Sonstige |4 oth | |
856 | 4 | 0 | |u https://doi.org/10.1007/978-3-663-12261-6 |x Verlag |3 Volltext |
912 | |a ZDB-2-SNA |a ZDB-2-BAD | ||
940 | 1 | |q ZDB-2-SNA_Archive | |
999 | |a oai:aleph.bib-bvb.de:BVB01-027887450 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 2\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk |
Datensatz im Suchindex
_version_ | 1804153155866329088 |
---|---|
any_adam_object | |
author | Leonov, Gennadij A. |
author_facet | Leonov, Gennadij A. |
author_role | aut |
author_sort | Leonov, Gennadij A. |
author_variant | g a l ga gal |
building | Verbundindex |
bvnumber | BV042452204 |
classification_tum | NAT 000 |
collection | ZDB-2-SNA ZDB-2-BAD |
ctrlnum | (OCoLC)858025984 (DE-599)BVBBV042452204 |
dewey-full | 620 |
dewey-hundreds | 600 - Technology (Applied sciences) |
dewey-ones | 620 - Engineering and allied operations |
dewey-raw | 620 |
dewey-search | 620 |
dewey-sort | 3620 |
dewey-tens | 620 - Engineering and allied operations |
discipline | Allgemeine Naturwissenschaft |
doi_str_mv | 10.1007/978-3-663-12261-6 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03417nmm a2200661zc 4500</leader><controlfield tag="001">BV042452204</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">150324s1992 |||| o||u| ||||||ger d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783663122616</subfield><subfield code="c">Online</subfield><subfield code="9">978-3-663-12261-6</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783663122623</subfield><subfield code="c">Print</subfield><subfield code="9">978-3-663-12262-3</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/978-3-663-12261-6</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)858025984</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV042452204</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">ger</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-91</subfield><subfield code="a">DE-634</subfield><subfield code="a">DE-92</subfield><subfield code="a">DE-706</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">620</subfield><subfield code="2">23</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">NAT 000</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Leonov, Gennadij A.</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Non-Local Methods for Pendulum-Like Feedback Systems</subfield><subfield code="c">von Gennadij A. Leonov, Volker Reitmann, Vera B. Smirnova</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Wiesbaden</subfield><subfield code="b">Vieweg+Teubner Verlag</subfield><subfield code="c">1992</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (VII, 242 S.)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">TEUBNER-TEXTE zur Mathematik</subfield><subfield code="x">0138-502X</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">0 are already deecribed by I. Newton (116]. However it was 250 years later that F. Tricorni (147] carried out the first non-local qualitative investigation of equation (0.1) with arbitrary o ~ 0 and "'{ ~ 0. It was proved by F. Tricorni that any solution of (0.1) with o > 0 corresponds either to a rotatory motion or to a damped oscillatory motion. Moreover, he showed that in the non-trivial case "'! :::; 1 there exists a bifurcation value ocr("'!) corresponding to a separatrix-loop, i.e. to a double-asymptotic to a saddle-point trajectory. For o < ocr("'!) equation (0.1) admits damped oscillations as weil as rotatory motions. For o > ocr("'') global asymptotic stability takes place, i.e. every motion is a damped oscillation. The papers of F. Tricorni became familiar immediately</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Engineering</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Engineering, general</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Ingenieurwissenschaften</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Regelungssystem</subfield><subfield code="0">(DE-588)4134712-2</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Differentialgleichungssystem</subfield><subfield code="0">(DE-588)4121137-6</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Phasenraum</subfield><subfield code="0">(DE-588)4139912-2</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Zylinderbereich</subfield><subfield code="0">(DE-588)4232981-4</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Verzweigung</subfield><subfield code="g">Mathematik</subfield><subfield code="0">(DE-588)4078889-1</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Stabilität</subfield><subfield code="0">(DE-588)4056693-6</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Ljapunov-Funktion</subfield><subfield code="0">(DE-588)4274502-0</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Pendelgleichung</subfield><subfield code="0">(DE-588)4322855-0</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Regelungssystem</subfield><subfield code="0">(DE-588)4134712-2</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Pendelgleichung</subfield><subfield code="0">(DE-588)4322855-0</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="2"><subfield code="a">Stabilität</subfield><subfield code="0">(DE-588)4056693-6</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="3"><subfield code="a">Verzweigung</subfield><subfield code="g">Mathematik</subfield><subfield code="0">(DE-588)4078889-1</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="4"><subfield code="a">Ljapunov-Funktion</subfield><subfield code="0">(DE-588)4274502-0</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Differentialgleichungssystem</subfield><subfield code="0">(DE-588)4121137-6</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2="1"><subfield code="a">Zylinderbereich</subfield><subfield code="0">(DE-588)4232981-4</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2="2"><subfield code="a">Phasenraum</subfield><subfield code="0">(DE-588)4139912-2</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Reitmann, Volker</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Smirnova, Vera B.</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1007/978-3-663-12261-6</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-2-SNA</subfield><subfield code="a">ZDB-2-BAD</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">ZDB-2-SNA_Archive</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-027887450</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield></record></collection> |
id | DE-604.BV042452204 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T01:22:07Z |
institution | BVB |
isbn | 9783663122616 9783663122623 |
issn | 0138-502X |
language | German |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-027887450 |
oclc_num | 858025984 |
open_access_boolean | |
owner | DE-91 DE-BY-TUM DE-634 DE-92 DE-706 |
owner_facet | DE-91 DE-BY-TUM DE-634 DE-92 DE-706 |
physical | 1 Online-Ressource (VII, 242 S.) |
psigel | ZDB-2-SNA ZDB-2-BAD ZDB-2-SNA_Archive |
publishDate | 1992 |
publishDateSearch | 1992 |
publishDateSort | 1992 |
publisher | Vieweg+Teubner Verlag |
record_format | marc |
series2 | TEUBNER-TEXTE zur Mathematik |
spelling | Leonov, Gennadij A. Verfasser aut Non-Local Methods for Pendulum-Like Feedback Systems von Gennadij A. Leonov, Volker Reitmann, Vera B. Smirnova Wiesbaden Vieweg+Teubner Verlag 1992 1 Online-Ressource (VII, 242 S.) txt rdacontent c rdamedia cr rdacarrier TEUBNER-TEXTE zur Mathematik 0138-502X 0 are already deecribed by I. Newton (116]. However it was 250 years later that F. Tricorni (147] carried out the first non-local qualitative investigation of equation (0.1) with arbitrary o ~ 0 and "'{ ~ 0. It was proved by F. Tricorni that any solution of (0.1) with o > 0 corresponds either to a rotatory motion or to a damped oscillatory motion. Moreover, he showed that in the non-trivial case "'! :::; 1 there exists a bifurcation value ocr("'!) corresponding to a separatrix-loop, i.e. to a double-asymptotic to a saddle-point trajectory. For o < ocr("'!) equation (0.1) admits damped oscillations as weil as rotatory motions. For o > ocr("'') global asymptotic stability takes place, i.e. every motion is a damped oscillation. The papers of F. Tricorni became familiar immediately Engineering Engineering, general Ingenieurwissenschaften Regelungssystem (DE-588)4134712-2 gnd rswk-swf Differentialgleichungssystem (DE-588)4121137-6 gnd rswk-swf Phasenraum (DE-588)4139912-2 gnd rswk-swf Zylinderbereich (DE-588)4232981-4 gnd rswk-swf Verzweigung Mathematik (DE-588)4078889-1 gnd rswk-swf Stabilität (DE-588)4056693-6 gnd rswk-swf Ljapunov-Funktion (DE-588)4274502-0 gnd rswk-swf Pendelgleichung (DE-588)4322855-0 gnd rswk-swf Regelungssystem (DE-588)4134712-2 s Pendelgleichung (DE-588)4322855-0 s Stabilität (DE-588)4056693-6 s Verzweigung Mathematik (DE-588)4078889-1 s Ljapunov-Funktion (DE-588)4274502-0 s 1\p DE-604 Differentialgleichungssystem (DE-588)4121137-6 s Zylinderbereich (DE-588)4232981-4 s Phasenraum (DE-588)4139912-2 s 2\p DE-604 Reitmann, Volker Sonstige oth Smirnova, Vera B. Sonstige oth https://doi.org/10.1007/978-3-663-12261-6 Verlag Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 2\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Leonov, Gennadij A. Non-Local Methods for Pendulum-Like Feedback Systems Engineering Engineering, general Ingenieurwissenschaften Regelungssystem (DE-588)4134712-2 gnd Differentialgleichungssystem (DE-588)4121137-6 gnd Phasenraum (DE-588)4139912-2 gnd Zylinderbereich (DE-588)4232981-4 gnd Verzweigung Mathematik (DE-588)4078889-1 gnd Stabilität (DE-588)4056693-6 gnd Ljapunov-Funktion (DE-588)4274502-0 gnd Pendelgleichung (DE-588)4322855-0 gnd |
subject_GND | (DE-588)4134712-2 (DE-588)4121137-6 (DE-588)4139912-2 (DE-588)4232981-4 (DE-588)4078889-1 (DE-588)4056693-6 (DE-588)4274502-0 (DE-588)4322855-0 |
title | Non-Local Methods for Pendulum-Like Feedback Systems |
title_auth | Non-Local Methods for Pendulum-Like Feedback Systems |
title_exact_search | Non-Local Methods for Pendulum-Like Feedback Systems |
title_full | Non-Local Methods for Pendulum-Like Feedback Systems von Gennadij A. Leonov, Volker Reitmann, Vera B. Smirnova |
title_fullStr | Non-Local Methods for Pendulum-Like Feedback Systems von Gennadij A. Leonov, Volker Reitmann, Vera B. Smirnova |
title_full_unstemmed | Non-Local Methods for Pendulum-Like Feedback Systems von Gennadij A. Leonov, Volker Reitmann, Vera B. Smirnova |
title_short | Non-Local Methods for Pendulum-Like Feedback Systems |
title_sort | non local methods for pendulum like feedback systems |
topic | Engineering Engineering, general Ingenieurwissenschaften Regelungssystem (DE-588)4134712-2 gnd Differentialgleichungssystem (DE-588)4121137-6 gnd Phasenraum (DE-588)4139912-2 gnd Zylinderbereich (DE-588)4232981-4 gnd Verzweigung Mathematik (DE-588)4078889-1 gnd Stabilität (DE-588)4056693-6 gnd Ljapunov-Funktion (DE-588)4274502-0 gnd Pendelgleichung (DE-588)4322855-0 gnd |
topic_facet | Engineering Engineering, general Ingenieurwissenschaften Regelungssystem Differentialgleichungssystem Phasenraum Zylinderbereich Verzweigung Mathematik Stabilität Ljapunov-Funktion Pendelgleichung |
url | https://doi.org/10.1007/978-3-663-12261-6 |
work_keys_str_mv | AT leonovgennadija nonlocalmethodsforpendulumlikefeedbacksystems AT reitmannvolker nonlocalmethodsforpendulumlikefeedbacksystems AT smirnovaverab nonlocalmethodsforpendulumlikefeedbacksystems |