Sobolev Spaces on Domains:
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | German |
Veröffentlicht: |
Wiesbaden
Vieweg+Teubner Verlag
1998
|
Schriftenreihe: | TEUBNER-TEXTE zur Mathematik
137 |
Schlagworte: | |
Online-Zugang: | Volltext |
Beschreibung: | The book is intended for graduate and post-graduate students and for researchers, especially those who are not specialists in the theory of function spaces and need to use Sobolov spaces as a tool in their investigations. The main concern is with Sobolev spaces defined in domains. The main topics are approximations by infinitely differentiable functions, integral representations, embedding, trace and extension theorems. Contents Preliminaries / Approximation by infitely differentiable functions / Sobolev's integral representation / Embedding theorems / Trace theorems / Extensions theorems / Comments Bibliography / Index |
Beschreibung: | 1 Online-Ressource (312 S.) |
ISBN: | 9783663113744 9783815420683 |
ISSN: | 0138-502X |
DOI: | 10.1007/978-3-663-11374-4 |
Internformat
MARC
LEADER | 00000nmm a2200000zcb4500 | ||
---|---|---|---|
001 | BV042452153 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 150324s1998 |||| o||u| ||||||ger d | ||
020 | |a 9783663113744 |c Online |9 978-3-663-11374-4 | ||
020 | |a 9783815420683 |c Print |9 978-3-8154-2068-3 | ||
024 | 7 | |a 10.1007/978-3-663-11374-4 |2 doi | |
035 | |a (OCoLC)860188350 | ||
035 | |a (DE-599)BVBBV042452153 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a ger | |
049 | |a DE-91 |a DE-634 |a DE-92 |a DE-706 | ||
082 | 0 | |a 515 |2 23 | |
084 | |a NAT 000 |2 stub | ||
100 | 1 | |a Burenkov, Victor I. |e Verfasser |4 aut | |
245 | 1 | 0 | |a Sobolev Spaces on Domains |c von Victor I. Burenkov |
264 | 1 | |a Wiesbaden |b Vieweg+Teubner Verlag |c 1998 | |
300 | |a 1 Online-Ressource (312 S.) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a TEUBNER-TEXTE zur Mathematik |v 137 |x 0138-502X | |
500 | |a The book is intended for graduate and post-graduate students and for researchers, especially those who are not specialists in the theory of function spaces and need to use Sobolov spaces as a tool in their investigations. The main concern is with Sobolev spaces defined in domains. The main topics are approximations by infinitely differentiable functions, integral representations, embedding, trace and extension theorems. Contents Preliminaries / Approximation by infitely differentiable functions / Sobolev's integral representation / Embedding theorems / Trace theorems / Extensions theorems / Comments Bibliography / Index | ||
650 | 4 | |a Mathematics | |
650 | 4 | |a Global analysis (Mathematics) | |
650 | 4 | |a Analysis | |
650 | 4 | |a Mathematik | |
650 | 0 | 7 | |a Sobolev-Einbettung |0 (DE-588)4181713-8 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Sobolev-Raum |0 (DE-588)4055345-0 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Sobolev-Raum |0 (DE-588)4055345-0 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
689 | 1 | 0 | |a Sobolev-Einbettung |0 (DE-588)4181713-8 |D s |
689 | 1 | |8 2\p |5 DE-604 | |
856 | 4 | 0 | |u https://doi.org/10.1007/978-3-663-11374-4 |x Verlag |3 Volltext |
912 | |a ZDB-2-SNA |a ZDB-2-BAD | ||
940 | 1 | |q ZDB-2-SNA_Archive | |
999 | |a oai:aleph.bib-bvb.de:BVB01-027887399 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 2\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk |
Datensatz im Suchindex
_version_ | 1804153155770908672 |
---|---|
any_adam_object | |
author | Burenkov, Victor I. |
author_facet | Burenkov, Victor I. |
author_role | aut |
author_sort | Burenkov, Victor I. |
author_variant | v i b vi vib |
building | Verbundindex |
bvnumber | BV042452153 |
classification_tum | NAT 000 |
collection | ZDB-2-SNA ZDB-2-BAD |
ctrlnum | (OCoLC)860188350 (DE-599)BVBBV042452153 |
dewey-full | 515 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 515 - Analysis |
dewey-raw | 515 |
dewey-search | 515 |
dewey-sort | 3515 |
dewey-tens | 510 - Mathematics |
discipline | Allgemeine Naturwissenschaft Mathematik |
doi_str_mv | 10.1007/978-3-663-11374-4 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02370nmm a2200505zcb4500</leader><controlfield tag="001">BV042452153</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">150324s1998 |||| o||u| ||||||ger d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783663113744</subfield><subfield code="c">Online</subfield><subfield code="9">978-3-663-11374-4</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783815420683</subfield><subfield code="c">Print</subfield><subfield code="9">978-3-8154-2068-3</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/978-3-663-11374-4</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)860188350</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV042452153</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">ger</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-91</subfield><subfield code="a">DE-634</subfield><subfield code="a">DE-92</subfield><subfield code="a">DE-706</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">515</subfield><subfield code="2">23</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">NAT 000</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Burenkov, Victor I.</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Sobolev Spaces on Domains</subfield><subfield code="c">von Victor I. Burenkov</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Wiesbaden</subfield><subfield code="b">Vieweg+Teubner Verlag</subfield><subfield code="c">1998</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (312 S.)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">TEUBNER-TEXTE zur Mathematik</subfield><subfield code="v">137</subfield><subfield code="x">0138-502X</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">The book is intended for graduate and post-graduate students and for researchers, especially those who are not specialists in the theory of function spaces and need to use Sobolov spaces as a tool in their investigations. The main concern is with Sobolev spaces defined in domains. The main topics are approximations by infinitely differentiable functions, integral representations, embedding, trace and extension theorems. Contents Preliminaries / Approximation by infitely differentiable functions / Sobolev's integral representation / Embedding theorems / Trace theorems / Extensions theorems / Comments Bibliography / Index</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Global analysis (Mathematics)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Analysis</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematik</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Sobolev-Einbettung</subfield><subfield code="0">(DE-588)4181713-8</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Sobolev-Raum</subfield><subfield code="0">(DE-588)4055345-0</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Sobolev-Raum</subfield><subfield code="0">(DE-588)4055345-0</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Sobolev-Einbettung</subfield><subfield code="0">(DE-588)4181713-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1007/978-3-663-11374-4</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-2-SNA</subfield><subfield code="a">ZDB-2-BAD</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">ZDB-2-SNA_Archive</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-027887399</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield></record></collection> |
id | DE-604.BV042452153 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T01:22:07Z |
institution | BVB |
isbn | 9783663113744 9783815420683 |
issn | 0138-502X |
language | German |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-027887399 |
oclc_num | 860188350 |
open_access_boolean | |
owner | DE-91 DE-BY-TUM DE-634 DE-92 DE-706 |
owner_facet | DE-91 DE-BY-TUM DE-634 DE-92 DE-706 |
physical | 1 Online-Ressource (312 S.) |
psigel | ZDB-2-SNA ZDB-2-BAD ZDB-2-SNA_Archive |
publishDate | 1998 |
publishDateSearch | 1998 |
publishDateSort | 1998 |
publisher | Vieweg+Teubner Verlag |
record_format | marc |
series2 | TEUBNER-TEXTE zur Mathematik |
spelling | Burenkov, Victor I. Verfasser aut Sobolev Spaces on Domains von Victor I. Burenkov Wiesbaden Vieweg+Teubner Verlag 1998 1 Online-Ressource (312 S.) txt rdacontent c rdamedia cr rdacarrier TEUBNER-TEXTE zur Mathematik 137 0138-502X The book is intended for graduate and post-graduate students and for researchers, especially those who are not specialists in the theory of function spaces and need to use Sobolov spaces as a tool in their investigations. The main concern is with Sobolev spaces defined in domains. The main topics are approximations by infinitely differentiable functions, integral representations, embedding, trace and extension theorems. Contents Preliminaries / Approximation by infitely differentiable functions / Sobolev's integral representation / Embedding theorems / Trace theorems / Extensions theorems / Comments Bibliography / Index Mathematics Global analysis (Mathematics) Analysis Mathematik Sobolev-Einbettung (DE-588)4181713-8 gnd rswk-swf Sobolev-Raum (DE-588)4055345-0 gnd rswk-swf Sobolev-Raum (DE-588)4055345-0 s 1\p DE-604 Sobolev-Einbettung (DE-588)4181713-8 s 2\p DE-604 https://doi.org/10.1007/978-3-663-11374-4 Verlag Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 2\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Burenkov, Victor I. Sobolev Spaces on Domains Mathematics Global analysis (Mathematics) Analysis Mathematik Sobolev-Einbettung (DE-588)4181713-8 gnd Sobolev-Raum (DE-588)4055345-0 gnd |
subject_GND | (DE-588)4181713-8 (DE-588)4055345-0 |
title | Sobolev Spaces on Domains |
title_auth | Sobolev Spaces on Domains |
title_exact_search | Sobolev Spaces on Domains |
title_full | Sobolev Spaces on Domains von Victor I. Burenkov |
title_fullStr | Sobolev Spaces on Domains von Victor I. Burenkov |
title_full_unstemmed | Sobolev Spaces on Domains von Victor I. Burenkov |
title_short | Sobolev Spaces on Domains |
title_sort | sobolev spaces on domains |
topic | Mathematics Global analysis (Mathematics) Analysis Mathematik Sobolev-Einbettung (DE-588)4181713-8 gnd Sobolev-Raum (DE-588)4055345-0 gnd |
topic_facet | Mathematics Global analysis (Mathematics) Analysis Mathematik Sobolev-Einbettung Sobolev-Raum |
url | https://doi.org/10.1007/978-3-663-11374-4 |
work_keys_str_mv | AT burenkovvictori sobolevspacesondomains |