Semisimpliziale algebraische Topologie:
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | German |
Veröffentlicht: |
Berlin, Heidelberg
Springer Berlin Heidelberg
1968
|
Schriftenreihe: | Die Grundlehren der mathematischen Wissenschaften, In Einzeldarstellungen mit besonderer Berücksichtigung der Anwendungsgebiete
147 |
Schlagworte: | |
Online-Zugang: | Volltext |
Beschreibung: | In diesem Buch werden einige Gebiete der algebraischen Topologie, die man heute größtenteils zum klassischen Bestand rechnet, mit semi simplizialen Methoden in einheitlicher Weise dargestellt. Der Begriff der semisimplizialen Menge ist dabei von grundlegender Bedeutung. Er wurde um 1950 von EILENBERG und ZILBER bei der Untersuchung der singulären Homologietheorie geprägt. Seine Nützlichkeit für die alge braische Topologie, und zwar nicht nur für die Homologietheorie, erwies sich bald darauf durch die Arbeiten von DOLD, KAN, MACLANE, MOORE und POSTNIKOV. Durch sie wurde das vorliegende Buch angeregt. Die semisimpliziale Menge steht zwischen der Topologie und der Algebra. Einerseits ist ihre Struktur so "algebraisch", daß man direkt Homologie-und Homotopiegruppen für sie definieren und allgemeine Zusammenhänge zwischen ihnen beweisen kann. Andererseits haben viele topologische Begriffe, wie z. B. die Faserung oder die Homotopie ein semisimpliziales Gegenstück. Der Zusammenhang zwischen der Topologie und der semisimplizialen Theorie beschränkt sich nicht auf diese Analogie: Es gibt einen Funktor S von der Kategorie der topo logischen Räume in die Kategorie der semisimplizialen Mengen, der die topologischen Begriffe in die entsprechenden semisimplizialen über führt. "Semisimpliziale algebraische Topologie" bedeutet am Beispiel der singulären Homologietheorie : Man ordnet dem Raum X seine semi simpliziale Menge SX zu, definiert die Homologie von SX als singuläre Homologie des Raumes X und folgert die Eigenschaften der singulären Homologietheorie aus denen der Homologie semisimplizialer Mengen. In dieser Weise werden die Homotopietheorie, die Homologie-und Kohomologietheorie semisimplizial entwickelt |
Beschreibung: | 1 Online-Ressource (VIII, 288 S.) |
ISBN: | 9783662129883 9783662129890 |
ISSN: | 0072-7830 |
DOI: | 10.1007/978-3-662-12988-3 |
Internformat
MARC
LEADER | 00000nmm a2200000zcb4500 | ||
---|---|---|---|
001 | BV042449790 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 150324s1968 |||| o||u| ||||||ger d | ||
020 | |a 9783662129883 |c Online |9 978-3-662-12988-3 | ||
020 | |a 9783662129890 |c Print |9 978-3-662-12989-0 | ||
024 | 7 | |a 10.1007/978-3-662-12988-3 |2 doi | |
035 | |a (OCoLC)864059736 | ||
035 | |a (DE-599)BVBBV042449790 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a ger | |
049 | |a DE-91 |a DE-634 |a DE-92 |a DE-706 | ||
082 | 0 | |a 510 |2 23 | |
084 | |a NAT 000 |2 stub | ||
100 | 1 | |a Lamotke, Klaus |e Verfasser |4 aut | |
245 | 1 | 0 | |a Semisimpliziale algebraische Topologie |c von Klaus Lamotke |
264 | 1 | |a Berlin, Heidelberg |b Springer Berlin Heidelberg |c 1968 | |
300 | |a 1 Online-Ressource (VIII, 288 S.) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a Die Grundlehren der mathematischen Wissenschaften, In Einzeldarstellungen mit besonderer Berücksichtigung der Anwendungsgebiete |v 147 |x 0072-7830 | |
500 | |a In diesem Buch werden einige Gebiete der algebraischen Topologie, die man heute größtenteils zum klassischen Bestand rechnet, mit semi simplizialen Methoden in einheitlicher Weise dargestellt. Der Begriff der semisimplizialen Menge ist dabei von grundlegender Bedeutung. Er wurde um 1950 von EILENBERG und ZILBER bei der Untersuchung der singulären Homologietheorie geprägt. Seine Nützlichkeit für die alge braische Topologie, und zwar nicht nur für die Homologietheorie, erwies sich bald darauf durch die Arbeiten von DOLD, KAN, MACLANE, MOORE und POSTNIKOV. Durch sie wurde das vorliegende Buch angeregt. Die semisimpliziale Menge steht zwischen der Topologie und der Algebra. Einerseits ist ihre Struktur so "algebraisch", daß man direkt Homologie-und Homotopiegruppen für sie definieren und allgemeine Zusammenhänge zwischen ihnen beweisen kann. Andererseits haben viele topologische Begriffe, wie z. B. die Faserung oder die Homotopie ein semisimpliziales Gegenstück. Der Zusammenhang zwischen der Topologie und der semisimplizialen Theorie beschränkt sich nicht auf diese Analogie: Es gibt einen Funktor S von der Kategorie der topo logischen Räume in die Kategorie der semisimplizialen Mengen, der die topologischen Begriffe in die entsprechenden semisimplizialen über führt. "Semisimpliziale algebraische Topologie" bedeutet am Beispiel der singulären Homologietheorie : Man ordnet dem Raum X seine semi simpliziale Menge SX zu, definiert die Homologie von SX als singuläre Homologie des Raumes X und folgert die Eigenschaften der singulären Homologietheorie aus denen der Homologie semisimplizialer Mengen. In dieser Weise werden die Homotopietheorie, die Homologie-und Kohomologietheorie semisimplizial entwickelt | ||
650 | 4 | |a Mathematics | |
650 | 4 | |a Mathematics, general | |
650 | 4 | |a Mathematik | |
650 | 0 | 7 | |a Algebraische Topologie |0 (DE-588)4120861-4 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Halbeinfache algebraische Topologie |0 (DE-588)4158781-9 |2 gnd |9 rswk-swf |
655 | 7 | |8 1\p |0 (DE-588)4113937-9 |a Hochschulschrift |2 gnd-content | |
689 | 0 | 0 | |a Halbeinfache algebraische Topologie |0 (DE-588)4158781-9 |D s |
689 | 0 | |8 2\p |5 DE-604 | |
689 | 1 | 0 | |a Algebraische Topologie |0 (DE-588)4120861-4 |D s |
689 | 1 | |8 3\p |5 DE-604 | |
856 | 4 | 0 | |u https://doi.org/10.1007/978-3-662-12988-3 |x Verlag |3 Volltext |
912 | |a ZDB-2-SNA |a ZDB-2-BAD | ||
940 | 1 | |q ZDB-2-SNA_Archive | |
999 | |a oai:aleph.bib-bvb.de:BVB01-027885036 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 2\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 3\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk |
Datensatz im Suchindex
_version_ | 1804153151220088832 |
---|---|
any_adam_object | |
author | Lamotke, Klaus |
author_facet | Lamotke, Klaus |
author_role | aut |
author_sort | Lamotke, Klaus |
author_variant | k l kl |
building | Verbundindex |
bvnumber | BV042449790 |
classification_tum | NAT 000 |
collection | ZDB-2-SNA ZDB-2-BAD |
ctrlnum | (OCoLC)864059736 (DE-599)BVBBV042449790 |
dewey-full | 510 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 510 - Mathematics |
dewey-raw | 510 |
dewey-search | 510 |
dewey-sort | 3510 |
dewey-tens | 510 - Mathematics |
discipline | Allgemeine Naturwissenschaft Mathematik |
doi_str_mv | 10.1007/978-3-662-12988-3 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03793nmm a2200517zcb4500</leader><controlfield tag="001">BV042449790</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">150324s1968 |||| o||u| ||||||ger d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783662129883</subfield><subfield code="c">Online</subfield><subfield code="9">978-3-662-12988-3</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783662129890</subfield><subfield code="c">Print</subfield><subfield code="9">978-3-662-12989-0</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/978-3-662-12988-3</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)864059736</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV042449790</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">ger</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-91</subfield><subfield code="a">DE-634</subfield><subfield code="a">DE-92</subfield><subfield code="a">DE-706</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">510</subfield><subfield code="2">23</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">NAT 000</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Lamotke, Klaus</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Semisimpliziale algebraische Topologie</subfield><subfield code="c">von Klaus Lamotke</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Berlin, Heidelberg</subfield><subfield code="b">Springer Berlin Heidelberg</subfield><subfield code="c">1968</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (VIII, 288 S.)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Die Grundlehren der mathematischen Wissenschaften, In Einzeldarstellungen mit besonderer Berücksichtigung der Anwendungsgebiete</subfield><subfield code="v">147</subfield><subfield code="x">0072-7830</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">In diesem Buch werden einige Gebiete der algebraischen Topologie, die man heute größtenteils zum klassischen Bestand rechnet, mit semi simplizialen Methoden in einheitlicher Weise dargestellt. Der Begriff der semisimplizialen Menge ist dabei von grundlegender Bedeutung. Er wurde um 1950 von EILENBERG und ZILBER bei der Untersuchung der singulären Homologietheorie geprägt. Seine Nützlichkeit für die alge braische Topologie, und zwar nicht nur für die Homologietheorie, erwies sich bald darauf durch die Arbeiten von DOLD, KAN, MACLANE, MOORE und POSTNIKOV. Durch sie wurde das vorliegende Buch angeregt. Die semisimpliziale Menge steht zwischen der Topologie und der Algebra. Einerseits ist ihre Struktur so "algebraisch", daß man direkt Homologie-und Homotopiegruppen für sie definieren und allgemeine Zusammenhänge zwischen ihnen beweisen kann. Andererseits haben viele topologische Begriffe, wie z. B. die Faserung oder die Homotopie ein semisimpliziales Gegenstück. Der Zusammenhang zwischen der Topologie und der semisimplizialen Theorie beschränkt sich nicht auf diese Analogie: Es gibt einen Funktor S von der Kategorie der topo logischen Räume in die Kategorie der semisimplizialen Mengen, der die topologischen Begriffe in die entsprechenden semisimplizialen über führt. "Semisimpliziale algebraische Topologie" bedeutet am Beispiel der singulären Homologietheorie : Man ordnet dem Raum X seine semi simpliziale Menge SX zu, definiert die Homologie von SX als singuläre Homologie des Raumes X und folgert die Eigenschaften der singulären Homologietheorie aus denen der Homologie semisimplizialer Mengen. In dieser Weise werden die Homotopietheorie, die Homologie-und Kohomologietheorie semisimplizial entwickelt</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematics, general</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematik</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Algebraische Topologie</subfield><subfield code="0">(DE-588)4120861-4</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Halbeinfache algebraische Topologie</subfield><subfield code="0">(DE-588)4158781-9</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="655" ind1=" " ind2="7"><subfield code="8">1\p</subfield><subfield code="0">(DE-588)4113937-9</subfield><subfield code="a">Hochschulschrift</subfield><subfield code="2">gnd-content</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Halbeinfache algebraische Topologie</subfield><subfield code="0">(DE-588)4158781-9</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">2\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Algebraische Topologie</subfield><subfield code="0">(DE-588)4120861-4</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="8">3\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1007/978-3-662-12988-3</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-2-SNA</subfield><subfield code="a">ZDB-2-BAD</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">ZDB-2-SNA_Archive</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-027885036</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">3\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield></record></collection> |
genre | 1\p (DE-588)4113937-9 Hochschulschrift gnd-content |
genre_facet | Hochschulschrift |
id | DE-604.BV042449790 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T01:22:03Z |
institution | BVB |
isbn | 9783662129883 9783662129890 |
issn | 0072-7830 |
language | German |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-027885036 |
oclc_num | 864059736 |
open_access_boolean | |
owner | DE-91 DE-BY-TUM DE-634 DE-92 DE-706 |
owner_facet | DE-91 DE-BY-TUM DE-634 DE-92 DE-706 |
physical | 1 Online-Ressource (VIII, 288 S.) |
psigel | ZDB-2-SNA ZDB-2-BAD ZDB-2-SNA_Archive |
publishDate | 1968 |
publishDateSearch | 1968 |
publishDateSort | 1968 |
publisher | Springer Berlin Heidelberg |
record_format | marc |
series2 | Die Grundlehren der mathematischen Wissenschaften, In Einzeldarstellungen mit besonderer Berücksichtigung der Anwendungsgebiete |
spelling | Lamotke, Klaus Verfasser aut Semisimpliziale algebraische Topologie von Klaus Lamotke Berlin, Heidelberg Springer Berlin Heidelberg 1968 1 Online-Ressource (VIII, 288 S.) txt rdacontent c rdamedia cr rdacarrier Die Grundlehren der mathematischen Wissenschaften, In Einzeldarstellungen mit besonderer Berücksichtigung der Anwendungsgebiete 147 0072-7830 In diesem Buch werden einige Gebiete der algebraischen Topologie, die man heute größtenteils zum klassischen Bestand rechnet, mit semi simplizialen Methoden in einheitlicher Weise dargestellt. Der Begriff der semisimplizialen Menge ist dabei von grundlegender Bedeutung. Er wurde um 1950 von EILENBERG und ZILBER bei der Untersuchung der singulären Homologietheorie geprägt. Seine Nützlichkeit für die alge braische Topologie, und zwar nicht nur für die Homologietheorie, erwies sich bald darauf durch die Arbeiten von DOLD, KAN, MACLANE, MOORE und POSTNIKOV. Durch sie wurde das vorliegende Buch angeregt. Die semisimpliziale Menge steht zwischen der Topologie und der Algebra. Einerseits ist ihre Struktur so "algebraisch", daß man direkt Homologie-und Homotopiegruppen für sie definieren und allgemeine Zusammenhänge zwischen ihnen beweisen kann. Andererseits haben viele topologische Begriffe, wie z. B. die Faserung oder die Homotopie ein semisimpliziales Gegenstück. Der Zusammenhang zwischen der Topologie und der semisimplizialen Theorie beschränkt sich nicht auf diese Analogie: Es gibt einen Funktor S von der Kategorie der topo logischen Räume in die Kategorie der semisimplizialen Mengen, der die topologischen Begriffe in die entsprechenden semisimplizialen über führt. "Semisimpliziale algebraische Topologie" bedeutet am Beispiel der singulären Homologietheorie : Man ordnet dem Raum X seine semi simpliziale Menge SX zu, definiert die Homologie von SX als singuläre Homologie des Raumes X und folgert die Eigenschaften der singulären Homologietheorie aus denen der Homologie semisimplizialer Mengen. In dieser Weise werden die Homotopietheorie, die Homologie-und Kohomologietheorie semisimplizial entwickelt Mathematics Mathematics, general Mathematik Algebraische Topologie (DE-588)4120861-4 gnd rswk-swf Halbeinfache algebraische Topologie (DE-588)4158781-9 gnd rswk-swf 1\p (DE-588)4113937-9 Hochschulschrift gnd-content Halbeinfache algebraische Topologie (DE-588)4158781-9 s 2\p DE-604 Algebraische Topologie (DE-588)4120861-4 s 3\p DE-604 https://doi.org/10.1007/978-3-662-12988-3 Verlag Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 2\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 3\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Lamotke, Klaus Semisimpliziale algebraische Topologie Mathematics Mathematics, general Mathematik Algebraische Topologie (DE-588)4120861-4 gnd Halbeinfache algebraische Topologie (DE-588)4158781-9 gnd |
subject_GND | (DE-588)4120861-4 (DE-588)4158781-9 (DE-588)4113937-9 |
title | Semisimpliziale algebraische Topologie |
title_auth | Semisimpliziale algebraische Topologie |
title_exact_search | Semisimpliziale algebraische Topologie |
title_full | Semisimpliziale algebraische Topologie von Klaus Lamotke |
title_fullStr | Semisimpliziale algebraische Topologie von Klaus Lamotke |
title_full_unstemmed | Semisimpliziale algebraische Topologie von Klaus Lamotke |
title_short | Semisimpliziale algebraische Topologie |
title_sort | semisimpliziale algebraische topologie |
topic | Mathematics Mathematics, general Mathematik Algebraische Topologie (DE-588)4120861-4 gnd Halbeinfache algebraische Topologie (DE-588)4158781-9 gnd |
topic_facet | Mathematics Mathematics, general Mathematik Algebraische Topologie Halbeinfache algebraische Topologie Hochschulschrift |
url | https://doi.org/10.1007/978-3-662-12988-3 |
work_keys_str_mv | AT lamotkeklaus semisimplizialealgebraischetopologie |