Begründung der Funktionentheorie auf Alten und Neuen Wegen:
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | German |
Veröffentlicht: |
Berlin, Heidelberg
Springer Berlin Heidelberg
1955
|
Schlagworte: | |
Online-Zugang: | Volltext |
Beschreibung: | Unter "Begründung der Funktionentheorie" verstehen wir die auf möglichst elementarem Weg gewonnene Darstellung einer Funktion f(z) == u(x, y) + iv(x, y) von z == x + yi durch gewöhnliche Potenzreihen, wenn über f(z) gewisse möglichst elementare Voraussetzungen gemacht werden. Diese können sehr verschiedener Art sein. Während aber wohl alle Lehrbücher der Funktionentheorie nur einen der beiden "klassi schen" Wege verfolgen, bei denen die Existenz der Ableitung f'(z) (GOURSAT) oder deren Existenz und Stetigkeit (CAUCHY) den Ausgangs punkt bildet, werden hier außer jenen beiden noch vier andere Wege bis zu dem genannten Endziel gebahnt. Einer von ihnen (MORERA. 1901, § 26) wird hauptsächlich nur aus historischem Interesse durchgeführt. Die drei anderen rühren in der vorliegenden Gestalt vom Verfasser her und gehen von geringeren Voraussetzungen aus als GOURSAT. Nur einer von ihnen war schon in der Schrift "Kurvenintegrale und Begründung der Funktionentheorie", Springer-Verlag 1948, ent· halten. Wichtige Teile der Funktionentheorie beginnen erst nach der Be gründung, wenn man also schon im Besitz der Potenz reihen für f (z) ist. Auf diese Teile gehen wir nicht mehr ein, da wir ja nicht ein "Lehrbuch der Funktionentheorie", sondern gewissermaßen nur den Anfang eines solchen auf sehr verschiedenen Wegen liefern wollen. Abschnitt A bringt Vorkenntnisse, die unmittelbar oder mittelbar wirklich benutzt werden, und zwar mit Beweisen der angeführten Sätze. Auch werde ausdrücklich betont, daß außer Kreisen keine gekrümmten ebenen Linien und über solche erstreckten Integrale bei uns auftreten |
Beschreibung: | 1 Online-Ressource |
ISBN: | 9783662012727 9783662012734 |
DOI: | 10.1007/978-3-662-01272-7 |
Internformat
MARC
LEADER | 00000nmm a2200000zc 4500 | ||
---|---|---|---|
001 | BV042448945 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 150324s1955 |||| o||u| ||||||ger d | ||
020 | |a 9783662012727 |c Online |9 978-3-662-01272-7 | ||
020 | |a 9783662012734 |c Print |9 978-3-662-01273-4 | ||
024 | 7 | |a 10.1007/978-3-662-01272-7 |2 doi | |
035 | |a (OCoLC)863939401 | ||
035 | |a (DE-599)BVBBV042448945 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a ger | |
049 | |a DE-91 |a DE-634 |a DE-92 |a DE-706 | ||
082 | 0 | |a 510 |2 23 | |
084 | |a NAT 000 |2 stub | ||
100 | 1 | |a Heffter, Lothar |e Verfasser |4 aut | |
245 | 1 | 0 | |a Begründung der Funktionentheorie auf Alten und Neuen Wegen |c von Lothar Heffter |
264 | 1 | |a Berlin, Heidelberg |b Springer Berlin Heidelberg |c 1955 | |
300 | |a 1 Online-Ressource | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
500 | |a Unter "Begründung der Funktionentheorie" verstehen wir die auf möglichst elementarem Weg gewonnene Darstellung einer Funktion f(z) == u(x, y) + iv(x, y) von z == x + yi durch gewöhnliche Potenzreihen, wenn über f(z) gewisse möglichst elementare Voraussetzungen gemacht werden. Diese können sehr verschiedener Art sein. Während aber wohl alle Lehrbücher der Funktionentheorie nur einen der beiden "klassi schen" Wege verfolgen, bei denen die Existenz der Ableitung f'(z) (GOURSAT) oder deren Existenz und Stetigkeit (CAUCHY) den Ausgangs punkt bildet, werden hier außer jenen beiden noch vier andere Wege bis zu dem genannten Endziel gebahnt. Einer von ihnen (MORERA. 1901, § 26) wird hauptsächlich nur aus historischem Interesse durchgeführt. Die drei anderen rühren in der vorliegenden Gestalt vom Verfasser her und gehen von geringeren Voraussetzungen aus als GOURSAT. Nur einer von ihnen war schon in der Schrift "Kurvenintegrale und Begründung der Funktionentheorie", Springer-Verlag 1948, ent· halten. Wichtige Teile der Funktionentheorie beginnen erst nach der Be gründung, wenn man also schon im Besitz der Potenz reihen für f (z) ist. Auf diese Teile gehen wir nicht mehr ein, da wir ja nicht ein "Lehrbuch der Funktionentheorie", sondern gewissermaßen nur den Anfang eines solchen auf sehr verschiedenen Wegen liefern wollen. Abschnitt A bringt Vorkenntnisse, die unmittelbar oder mittelbar wirklich benutzt werden, und zwar mit Beweisen der angeführten Sätze. Auch werde ausdrücklich betont, daß außer Kreisen keine gekrümmten ebenen Linien und über solche erstreckten Integrale bei uns auftreten | ||
650 | 4 | |a Mathematics | |
650 | 4 | |a Mathematics, general | |
650 | 4 | |a Mathematik | |
650 | 0 | 7 | |a Geschichte |0 (DE-588)4020517-4 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Funktionentheorie |0 (DE-588)4018935-1 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Funktionentheorie |0 (DE-588)4018935-1 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
689 | 1 | 0 | |a Geschichte |0 (DE-588)4020517-4 |D s |
689 | 1 | |8 2\p |5 DE-604 | |
856 | 4 | 0 | |u https://doi.org/10.1007/978-3-662-01272-7 |x Verlag |3 Volltext |
912 | |a ZDB-2-SNA |a ZDB-2-BAD | ||
940 | 1 | |q ZDB-2-SNA_Archive | |
999 | |a oai:aleph.bib-bvb.de:BVB01-027884191 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 2\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk |
Datensatz im Suchindex
_version_ | 1804153149486792704 |
---|---|
any_adam_object | |
author | Heffter, Lothar |
author_facet | Heffter, Lothar |
author_role | aut |
author_sort | Heffter, Lothar |
author_variant | l h lh |
building | Verbundindex |
bvnumber | BV042448945 |
classification_tum | NAT 000 |
collection | ZDB-2-SNA ZDB-2-BAD |
ctrlnum | (OCoLC)863939401 (DE-599)BVBBV042448945 |
dewey-full | 510 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 510 - Mathematics |
dewey-raw | 510 |
dewey-search | 510 |
dewey-sort | 3510 |
dewey-tens | 510 - Mathematics |
discipline | Allgemeine Naturwissenschaft Mathematik |
doi_str_mv | 10.1007/978-3-662-01272-7 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03310nmm a2200481zc 4500</leader><controlfield tag="001">BV042448945</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">150324s1955 |||| o||u| ||||||ger d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783662012727</subfield><subfield code="c">Online</subfield><subfield code="9">978-3-662-01272-7</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783662012734</subfield><subfield code="c">Print</subfield><subfield code="9">978-3-662-01273-4</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/978-3-662-01272-7</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)863939401</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV042448945</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">ger</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-91</subfield><subfield code="a">DE-634</subfield><subfield code="a">DE-92</subfield><subfield code="a">DE-706</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">510</subfield><subfield code="2">23</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">NAT 000</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Heffter, Lothar</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Begründung der Funktionentheorie auf Alten und Neuen Wegen</subfield><subfield code="c">von Lothar Heffter</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Berlin, Heidelberg</subfield><subfield code="b">Springer Berlin Heidelberg</subfield><subfield code="c">1955</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Unter "Begründung der Funktionentheorie" verstehen wir die auf möglichst elementarem Weg gewonnene Darstellung einer Funktion f(z) == u(x, y) + iv(x, y) von z == x + yi durch gewöhnliche Potenzreihen, wenn über f(z) gewisse möglichst elementare Voraussetzungen gemacht werden. Diese können sehr verschiedener Art sein. Während aber wohl alle Lehrbücher der Funktionentheorie nur einen der beiden "klassi schen" Wege verfolgen, bei denen die Existenz der Ableitung f'(z) (GOURSAT) oder deren Existenz und Stetigkeit (CAUCHY) den Ausgangs punkt bildet, werden hier außer jenen beiden noch vier andere Wege bis zu dem genannten Endziel gebahnt. Einer von ihnen (MORERA. 1901, § 26) wird hauptsächlich nur aus historischem Interesse durchgeführt. Die drei anderen rühren in der vorliegenden Gestalt vom Verfasser her und gehen von geringeren Voraussetzungen aus als GOURSAT. Nur einer von ihnen war schon in der Schrift "Kurvenintegrale und Begründung der Funktionentheorie", Springer-Verlag 1948, ent· halten. Wichtige Teile der Funktionentheorie beginnen erst nach der Be gründung, wenn man also schon im Besitz der Potenz reihen für f (z) ist. Auf diese Teile gehen wir nicht mehr ein, da wir ja nicht ein "Lehrbuch der Funktionentheorie", sondern gewissermaßen nur den Anfang eines solchen auf sehr verschiedenen Wegen liefern wollen. Abschnitt A bringt Vorkenntnisse, die unmittelbar oder mittelbar wirklich benutzt werden, und zwar mit Beweisen der angeführten Sätze. Auch werde ausdrücklich betont, daß außer Kreisen keine gekrümmten ebenen Linien und über solche erstreckten Integrale bei uns auftreten</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematics, general</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematik</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Geschichte</subfield><subfield code="0">(DE-588)4020517-4</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Funktionentheorie</subfield><subfield code="0">(DE-588)4018935-1</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Funktionentheorie</subfield><subfield code="0">(DE-588)4018935-1</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Geschichte</subfield><subfield code="0">(DE-588)4020517-4</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1007/978-3-662-01272-7</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-2-SNA</subfield><subfield code="a">ZDB-2-BAD</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">ZDB-2-SNA_Archive</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-027884191</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield></record></collection> |
id | DE-604.BV042448945 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T01:22:01Z |
institution | BVB |
isbn | 9783662012727 9783662012734 |
language | German |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-027884191 |
oclc_num | 863939401 |
open_access_boolean | |
owner | DE-91 DE-BY-TUM DE-634 DE-92 DE-706 |
owner_facet | DE-91 DE-BY-TUM DE-634 DE-92 DE-706 |
physical | 1 Online-Ressource |
psigel | ZDB-2-SNA ZDB-2-BAD ZDB-2-SNA_Archive |
publishDate | 1955 |
publishDateSearch | 1955 |
publishDateSort | 1955 |
publisher | Springer Berlin Heidelberg |
record_format | marc |
spelling | Heffter, Lothar Verfasser aut Begründung der Funktionentheorie auf Alten und Neuen Wegen von Lothar Heffter Berlin, Heidelberg Springer Berlin Heidelberg 1955 1 Online-Ressource txt rdacontent c rdamedia cr rdacarrier Unter "Begründung der Funktionentheorie" verstehen wir die auf möglichst elementarem Weg gewonnene Darstellung einer Funktion f(z) == u(x, y) + iv(x, y) von z == x + yi durch gewöhnliche Potenzreihen, wenn über f(z) gewisse möglichst elementare Voraussetzungen gemacht werden. Diese können sehr verschiedener Art sein. Während aber wohl alle Lehrbücher der Funktionentheorie nur einen der beiden "klassi schen" Wege verfolgen, bei denen die Existenz der Ableitung f'(z) (GOURSAT) oder deren Existenz und Stetigkeit (CAUCHY) den Ausgangs punkt bildet, werden hier außer jenen beiden noch vier andere Wege bis zu dem genannten Endziel gebahnt. Einer von ihnen (MORERA. 1901, § 26) wird hauptsächlich nur aus historischem Interesse durchgeführt. Die drei anderen rühren in der vorliegenden Gestalt vom Verfasser her und gehen von geringeren Voraussetzungen aus als GOURSAT. Nur einer von ihnen war schon in der Schrift "Kurvenintegrale und Begründung der Funktionentheorie", Springer-Verlag 1948, ent· halten. Wichtige Teile der Funktionentheorie beginnen erst nach der Be gründung, wenn man also schon im Besitz der Potenz reihen für f (z) ist. Auf diese Teile gehen wir nicht mehr ein, da wir ja nicht ein "Lehrbuch der Funktionentheorie", sondern gewissermaßen nur den Anfang eines solchen auf sehr verschiedenen Wegen liefern wollen. Abschnitt A bringt Vorkenntnisse, die unmittelbar oder mittelbar wirklich benutzt werden, und zwar mit Beweisen der angeführten Sätze. Auch werde ausdrücklich betont, daß außer Kreisen keine gekrümmten ebenen Linien und über solche erstreckten Integrale bei uns auftreten Mathematics Mathematics, general Mathematik Geschichte (DE-588)4020517-4 gnd rswk-swf Funktionentheorie (DE-588)4018935-1 gnd rswk-swf Funktionentheorie (DE-588)4018935-1 s 1\p DE-604 Geschichte (DE-588)4020517-4 s 2\p DE-604 https://doi.org/10.1007/978-3-662-01272-7 Verlag Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 2\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Heffter, Lothar Begründung der Funktionentheorie auf Alten und Neuen Wegen Mathematics Mathematics, general Mathematik Geschichte (DE-588)4020517-4 gnd Funktionentheorie (DE-588)4018935-1 gnd |
subject_GND | (DE-588)4020517-4 (DE-588)4018935-1 |
title | Begründung der Funktionentheorie auf Alten und Neuen Wegen |
title_auth | Begründung der Funktionentheorie auf Alten und Neuen Wegen |
title_exact_search | Begründung der Funktionentheorie auf Alten und Neuen Wegen |
title_full | Begründung der Funktionentheorie auf Alten und Neuen Wegen von Lothar Heffter |
title_fullStr | Begründung der Funktionentheorie auf Alten und Neuen Wegen von Lothar Heffter |
title_full_unstemmed | Begründung der Funktionentheorie auf Alten und Neuen Wegen von Lothar Heffter |
title_short | Begründung der Funktionentheorie auf Alten und Neuen Wegen |
title_sort | begrundung der funktionentheorie auf alten und neuen wegen |
topic | Mathematics Mathematics, general Mathematik Geschichte (DE-588)4020517-4 gnd Funktionentheorie (DE-588)4018935-1 gnd |
topic_facet | Mathematics Mathematics, general Mathematik Geschichte Funktionentheorie |
url | https://doi.org/10.1007/978-3-662-01272-7 |
work_keys_str_mv | AT heffterlothar begrundungderfunktionentheorieaufaltenundneuenwegen |