Spektraldarstellung linearer Transformationen des Hilbertschen Raumes:
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | German |
Veröffentlicht: |
Berlin, Heidelberg
Springer Berlin Heidelberg
1967
|
Schriftenreihe: | Ergebnisse der Mathematik und ihrer Grenzgebiete, A Series of Modern Surveys in Mathematics
39 |
Schlagworte: | |
Online-Zugang: | Volltext |
Beschreibung: | In seinen Untersuchungen über Integralgleichungen wurde HILBERT zum Begriff des unendlichen Folgenraumes ~ geführt. Die Elemente von ~ sind die "Vektoren" a mit unendlichvielen Komponenten (al' a, ... ) und von endlicher Norm Ilall = [iai]i; das innere Pro- 2 .1:=1 CX) dukt (a, b) der Vektoren a und b wird dann durch 1: aj;bj; definiert . .1:-1 Die Geometrie dieses Raumes hat viele Analogien zur Geometrie eines endlichdimensionalen Vektorraumes, es treten aber beim Übergang vom endlich- zum unendlichdimensionalen freilich auch neue Erschei nungen auf. Ist A eine lineare Transformation des n-dimensionalen Vektor raumes ffi", deren Matrix symmetrisch ist, so weiß man z. B., daß es paarweise orthogonale Einheitsvektoren a , all' ... , a,. und reelle Zah l len Ä , Ä, ... , Ä" (Ä -< Ä+ ) derart gibt, daß Aall = Ällall gilt; Ä ist l t ll II I ll ein Eigenwert von A, all ist ein zu Ä gehöriger Eigenvektor von A. h - Dagegen gibt es in ~ lineare Transformationen A mit symmetrischer (unendlicher) Matrix, für die die Gleichung A a = Äa gar keine Lösung a besitzt, was auch der Wert des Parameters Ä sei |
Beschreibung: | 1 Online-Ressource (VI, 81 S.) |
ISBN: | 9783662009550 9783540037811 |
DOI: | 10.1007/978-3-662-00955-0 |
Internformat
MARC
LEADER | 00000nmm a2200000zcb4500 | ||
---|---|---|---|
001 | BV042448918 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 150324s1967 |||| o||u| ||||||ger d | ||
020 | |a 9783662009550 |c Online |9 978-3-662-00955-0 | ||
020 | |a 9783540037811 |c Print |9 978-3-540-03781-1 | ||
024 | 7 | |a 10.1007/978-3-662-00955-0 |2 doi | |
035 | |a (OCoLC)863967070 | ||
035 | |a (DE-599)BVBBV042448918 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a ger | |
049 | |a DE-91 |a DE-634 |a DE-92 |a DE-706 | ||
082 | 0 | |a 510 |2 23 | |
084 | |a NAT 000 |2 stub | ||
100 | 1 | |a Szõkefalvi-Nagy, Béla |e Verfasser |4 aut | |
245 | 1 | 0 | |a Spektraldarstellung linearer Transformationen des Hilbertschen Raumes |c von Béla Szõkefalvi-Nagy |
264 | 1 | |a Berlin, Heidelberg |b Springer Berlin Heidelberg |c 1967 | |
300 | |a 1 Online-Ressource (VI, 81 S.) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a Ergebnisse der Mathematik und ihrer Grenzgebiete, A Series of Modern Surveys in Mathematics |v 39 | |
500 | |a In seinen Untersuchungen über Integralgleichungen wurde HILBERT zum Begriff des unendlichen Folgenraumes ~ geführt. Die Elemente von ~ sind die "Vektoren" a mit unendlichvielen Komponenten (al' a, ... ) und von endlicher Norm Ilall = [iai]i; das innere Pro- 2 .1:=1 CX) dukt (a, b) der Vektoren a und b wird dann durch 1: aj;bj; definiert . .1:-1 Die Geometrie dieses Raumes hat viele Analogien zur Geometrie eines endlichdimensionalen Vektorraumes, es treten aber beim Übergang vom endlich- zum unendlichdimensionalen freilich auch neue Erschei nungen auf. Ist A eine lineare Transformation des n-dimensionalen Vektor raumes ffi", deren Matrix symmetrisch ist, so weiß man z. B., daß es paarweise orthogonale Einheitsvektoren a , all' ... , a,. und reelle Zah l len Ä , Ä, ... , Ä" (Ä -< Ä+ ) derart gibt, daß Aall = Ällall gilt; Ä ist l t ll II I ll ein Eigenwert von A, all ist ein zu Ä gehöriger Eigenvektor von A. h - Dagegen gibt es in ~ lineare Transformationen A mit symmetrischer (unendlicher) Matrix, für die die Gleichung A a = Äa gar keine Lösung a besitzt, was auch der Wert des Parameters Ä sei | ||
650 | 4 | |a Mathematics | |
650 | 4 | |a Mathematics, general | |
650 | 4 | |a Mathematik | |
650 | 0 | 7 | |a Spektraltheorie |0 (DE-588)4116561-5 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Hilbert-Raum |0 (DE-588)4159850-7 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Linearer Operator |0 (DE-588)4167721-3 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Spektraldarstellung |0 (DE-588)4182162-2 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Funktionalanalysis |0 (DE-588)4018916-8 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Lineare Transformation |0 (DE-588)4167712-2 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Eigenwertproblem |0 (DE-588)4013802-1 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Lineare Transformation |0 (DE-588)4167712-2 |D s |
689 | 0 | 1 | |a Hilbert-Raum |0 (DE-588)4159850-7 |D s |
689 | 0 | 2 | |a Spektraldarstellung |0 (DE-588)4182162-2 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
689 | 1 | 0 | |a Hilbert-Raum |0 (DE-588)4159850-7 |D s |
689 | 1 | 1 | |a Linearer Operator |0 (DE-588)4167721-3 |D s |
689 | 1 | 2 | |a Spektraltheorie |0 (DE-588)4116561-5 |D s |
689 | 1 | |8 2\p |5 DE-604 | |
689 | 2 | 0 | |a Eigenwertproblem |0 (DE-588)4013802-1 |D s |
689 | 2 | |8 3\p |5 DE-604 | |
689 | 3 | 0 | |a Funktionalanalysis |0 (DE-588)4018916-8 |D s |
689 | 3 | |8 4\p |5 DE-604 | |
856 | 4 | 0 | |u https://doi.org/10.1007/978-3-662-00955-0 |x Verlag |3 Volltext |
912 | |a ZDB-2-SNA |a ZDB-2-BAD | ||
940 | 1 | |q ZDB-2-SNA_Archive | |
999 | |a oai:aleph.bib-bvb.de:BVB01-027884164 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 2\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 3\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 4\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk |
Datensatz im Suchindex
_version_ | 1804153149446946816 |
---|---|
any_adam_object | |
author | Szõkefalvi-Nagy, Béla |
author_facet | Szõkefalvi-Nagy, Béla |
author_role | aut |
author_sort | Szõkefalvi-Nagy, Béla |
author_variant | b s n bsn |
building | Verbundindex |
bvnumber | BV042448918 |
classification_tum | NAT 000 |
collection | ZDB-2-SNA ZDB-2-BAD |
ctrlnum | (OCoLC)863967070 (DE-599)BVBBV042448918 |
dewey-full | 510 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 510 - Mathematics |
dewey-raw | 510 |
dewey-search | 510 |
dewey-sort | 3510 |
dewey-tens | 510 - Mathematics |
discipline | Allgemeine Naturwissenschaft Mathematik |
doi_str_mv | 10.1007/978-3-662-00955-0 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03869nmm a2200673zcb4500</leader><controlfield tag="001">BV042448918</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">150324s1967 |||| o||u| ||||||ger d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783662009550</subfield><subfield code="c">Online</subfield><subfield code="9">978-3-662-00955-0</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783540037811</subfield><subfield code="c">Print</subfield><subfield code="9">978-3-540-03781-1</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/978-3-662-00955-0</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)863967070</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV042448918</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">ger</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-91</subfield><subfield code="a">DE-634</subfield><subfield code="a">DE-92</subfield><subfield code="a">DE-706</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">510</subfield><subfield code="2">23</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">NAT 000</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Szõkefalvi-Nagy, Béla</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Spektraldarstellung linearer Transformationen des Hilbertschen Raumes</subfield><subfield code="c">von Béla Szõkefalvi-Nagy</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Berlin, Heidelberg</subfield><subfield code="b">Springer Berlin Heidelberg</subfield><subfield code="c">1967</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (VI, 81 S.)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Ergebnisse der Mathematik und ihrer Grenzgebiete, A Series of Modern Surveys in Mathematics</subfield><subfield code="v">39</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">In seinen Untersuchungen über Integralgleichungen wurde HILBERT zum Begriff des unendlichen Folgenraumes ~ geführt. Die Elemente von ~ sind die "Vektoren" a mit unendlichvielen Komponenten (al' a, ... ) und von endlicher Norm Ilall = [iai]i; das innere Pro- 2 .1:=1 CX) dukt (a, b) der Vektoren a und b wird dann durch 1: aj;bj; definiert . .1:-1 Die Geometrie dieses Raumes hat viele Analogien zur Geometrie eines endlichdimensionalen Vektorraumes, es treten aber beim Übergang vom endlich- zum unendlichdimensionalen freilich auch neue Erschei nungen auf. Ist A eine lineare Transformation des n-dimensionalen Vektor raumes ffi", deren Matrix symmetrisch ist, so weiß man z. B., daß es paarweise orthogonale Einheitsvektoren a , all' ... , a,. und reelle Zah l len Ä , Ä, ... , Ä" (Ä -< Ä+ ) derart gibt, daß Aall = Ällall gilt; Ä ist l t ll II I ll ein Eigenwert von A, all ist ein zu Ä gehöriger Eigenvektor von A. h - Dagegen gibt es in ~ lineare Transformationen A mit symmetrischer (unendlicher) Matrix, für die die Gleichung A a = Äa gar keine Lösung a besitzt, was auch der Wert des Parameters Ä sei</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematics, general</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematik</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Spektraltheorie</subfield><subfield code="0">(DE-588)4116561-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Hilbert-Raum</subfield><subfield code="0">(DE-588)4159850-7</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Linearer Operator</subfield><subfield code="0">(DE-588)4167721-3</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Spektraldarstellung</subfield><subfield code="0">(DE-588)4182162-2</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Funktionalanalysis</subfield><subfield code="0">(DE-588)4018916-8</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Lineare Transformation</subfield><subfield code="0">(DE-588)4167712-2</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Eigenwertproblem</subfield><subfield code="0">(DE-588)4013802-1</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Lineare Transformation</subfield><subfield code="0">(DE-588)4167712-2</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Hilbert-Raum</subfield><subfield code="0">(DE-588)4159850-7</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="2"><subfield code="a">Spektraldarstellung</subfield><subfield code="0">(DE-588)4182162-2</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Hilbert-Raum</subfield><subfield code="0">(DE-588)4159850-7</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2="1"><subfield code="a">Linearer Operator</subfield><subfield code="0">(DE-588)4167721-3</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2="2"><subfield code="a">Spektraltheorie</subfield><subfield code="0">(DE-588)4116561-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="2" ind2="0"><subfield code="a">Eigenwertproblem</subfield><subfield code="0">(DE-588)4013802-1</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="2" ind2=" "><subfield code="8">3\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="3" ind2="0"><subfield code="a">Funktionalanalysis</subfield><subfield code="0">(DE-588)4018916-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="3" ind2=" "><subfield code="8">4\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1007/978-3-662-00955-0</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-2-SNA</subfield><subfield code="a">ZDB-2-BAD</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">ZDB-2-SNA_Archive</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-027884164</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">3\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">4\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield></record></collection> |
id | DE-604.BV042448918 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T01:22:01Z |
institution | BVB |
isbn | 9783662009550 9783540037811 |
language | German |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-027884164 |
oclc_num | 863967070 |
open_access_boolean | |
owner | DE-91 DE-BY-TUM DE-634 DE-92 DE-706 |
owner_facet | DE-91 DE-BY-TUM DE-634 DE-92 DE-706 |
physical | 1 Online-Ressource (VI, 81 S.) |
psigel | ZDB-2-SNA ZDB-2-BAD ZDB-2-SNA_Archive |
publishDate | 1967 |
publishDateSearch | 1967 |
publishDateSort | 1967 |
publisher | Springer Berlin Heidelberg |
record_format | marc |
series2 | Ergebnisse der Mathematik und ihrer Grenzgebiete, A Series of Modern Surveys in Mathematics |
spelling | Szõkefalvi-Nagy, Béla Verfasser aut Spektraldarstellung linearer Transformationen des Hilbertschen Raumes von Béla Szõkefalvi-Nagy Berlin, Heidelberg Springer Berlin Heidelberg 1967 1 Online-Ressource (VI, 81 S.) txt rdacontent c rdamedia cr rdacarrier Ergebnisse der Mathematik und ihrer Grenzgebiete, A Series of Modern Surveys in Mathematics 39 In seinen Untersuchungen über Integralgleichungen wurde HILBERT zum Begriff des unendlichen Folgenraumes ~ geführt. Die Elemente von ~ sind die "Vektoren" a mit unendlichvielen Komponenten (al' a, ... ) und von endlicher Norm Ilall = [iai]i; das innere Pro- 2 .1:=1 CX) dukt (a, b) der Vektoren a und b wird dann durch 1: aj;bj; definiert . .1:-1 Die Geometrie dieses Raumes hat viele Analogien zur Geometrie eines endlichdimensionalen Vektorraumes, es treten aber beim Übergang vom endlich- zum unendlichdimensionalen freilich auch neue Erschei nungen auf. Ist A eine lineare Transformation des n-dimensionalen Vektor raumes ffi", deren Matrix symmetrisch ist, so weiß man z. B., daß es paarweise orthogonale Einheitsvektoren a , all' ... , a,. und reelle Zah l len Ä , Ä, ... , Ä" (Ä -< Ä+ ) derart gibt, daß Aall = Ällall gilt; Ä ist l t ll II I ll ein Eigenwert von A, all ist ein zu Ä gehöriger Eigenvektor von A. h - Dagegen gibt es in ~ lineare Transformationen A mit symmetrischer (unendlicher) Matrix, für die die Gleichung A a = Äa gar keine Lösung a besitzt, was auch der Wert des Parameters Ä sei Mathematics Mathematics, general Mathematik Spektraltheorie (DE-588)4116561-5 gnd rswk-swf Hilbert-Raum (DE-588)4159850-7 gnd rswk-swf Linearer Operator (DE-588)4167721-3 gnd rswk-swf Spektraldarstellung (DE-588)4182162-2 gnd rswk-swf Funktionalanalysis (DE-588)4018916-8 gnd rswk-swf Lineare Transformation (DE-588)4167712-2 gnd rswk-swf Eigenwertproblem (DE-588)4013802-1 gnd rswk-swf Lineare Transformation (DE-588)4167712-2 s Hilbert-Raum (DE-588)4159850-7 s Spektraldarstellung (DE-588)4182162-2 s 1\p DE-604 Linearer Operator (DE-588)4167721-3 s Spektraltheorie (DE-588)4116561-5 s 2\p DE-604 Eigenwertproblem (DE-588)4013802-1 s 3\p DE-604 Funktionalanalysis (DE-588)4018916-8 s 4\p DE-604 https://doi.org/10.1007/978-3-662-00955-0 Verlag Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 2\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 3\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 4\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Szõkefalvi-Nagy, Béla Spektraldarstellung linearer Transformationen des Hilbertschen Raumes Mathematics Mathematics, general Mathematik Spektraltheorie (DE-588)4116561-5 gnd Hilbert-Raum (DE-588)4159850-7 gnd Linearer Operator (DE-588)4167721-3 gnd Spektraldarstellung (DE-588)4182162-2 gnd Funktionalanalysis (DE-588)4018916-8 gnd Lineare Transformation (DE-588)4167712-2 gnd Eigenwertproblem (DE-588)4013802-1 gnd |
subject_GND | (DE-588)4116561-5 (DE-588)4159850-7 (DE-588)4167721-3 (DE-588)4182162-2 (DE-588)4018916-8 (DE-588)4167712-2 (DE-588)4013802-1 |
title | Spektraldarstellung linearer Transformationen des Hilbertschen Raumes |
title_auth | Spektraldarstellung linearer Transformationen des Hilbertschen Raumes |
title_exact_search | Spektraldarstellung linearer Transformationen des Hilbertschen Raumes |
title_full | Spektraldarstellung linearer Transformationen des Hilbertschen Raumes von Béla Szõkefalvi-Nagy |
title_fullStr | Spektraldarstellung linearer Transformationen des Hilbertschen Raumes von Béla Szõkefalvi-Nagy |
title_full_unstemmed | Spektraldarstellung linearer Transformationen des Hilbertschen Raumes von Béla Szõkefalvi-Nagy |
title_short | Spektraldarstellung linearer Transformationen des Hilbertschen Raumes |
title_sort | spektraldarstellung linearer transformationen des hilbertschen raumes |
topic | Mathematics Mathematics, general Mathematik Spektraltheorie (DE-588)4116561-5 gnd Hilbert-Raum (DE-588)4159850-7 gnd Linearer Operator (DE-588)4167721-3 gnd Spektraldarstellung (DE-588)4182162-2 gnd Funktionalanalysis (DE-588)4018916-8 gnd Lineare Transformation (DE-588)4167712-2 gnd Eigenwertproblem (DE-588)4013802-1 gnd |
topic_facet | Mathematics Mathematics, general Mathematik Spektraltheorie Hilbert-Raum Linearer Operator Spektraldarstellung Funktionalanalysis Lineare Transformation Eigenwertproblem |
url | https://doi.org/10.1007/978-3-662-00955-0 |
work_keys_str_mv | AT szokefalvinagybela spektraldarstellunglinearertransformationendeshilbertschenraumes |