Einführung in die numerische Berechnung von Finanz-Derivaten: Computational Finance
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | German |
Veröffentlicht: |
Berlin, Heidelberg
Springer Berlin Heidelberg
2000
|
Schriftenreihe: | Springer-Lehrbuch
|
Schlagworte: | |
Online-Zugang: | Volltext |
Beschreibung: | In jüngster Zeit haben Finanz-Derivate eine starke Verbreitung erfahren. Das vorliegende Lehrbuch bietet eine elementare Einführung in diejenigen Methoden der Numerik und des Wissenschaftichen Rechnens, die insbesondere für die Berechung von Optionspreisen grundlegend sind. Nach einer kurzen Beschreibung der Modellierung von Standard-Optionen folgt als erster Hauptteil die numerische Simulation der Stochastik mit der Berechnung von Zufallszahlen, der Integration von stochastischen Differentialgleichungen und dem Einsatz von Monte-Carlo-Verfahren. Der zweite Hauptteil konzentriert sich auf die Numerik zu den Black-Scholes Ansätzen mit partiellen Differential-Gleichungen und -Ungleichungen. Dabei werden Lösungsalgorithmen von Differenzenverfahren und von Finite-Element-Verfahren erklärt. Übungsaufgaben, instruktive Abbildungen sowie themenbezogene Anhänge runden das Buch ab. Lösungshinweise zu ausgewählten Aufgaben werden unter http://www.mi.uni-koeln.de/numerik/compfin/ bereitgestellt |
Beschreibung: | 1 Online-Ressource (XII, 154S. 34 Abb) |
ISBN: | 9783642597336 9783540668893 |
ISSN: | 0937-7433 |
DOI: | 10.1007/978-3-642-59733-6 |
Internformat
MARC
LEADER | 00000nmm a2200000zc 4500 | ||
---|---|---|---|
001 | BV042446122 | ||
003 | DE-604 | ||
005 | 20160915 | ||
007 | cr|uuu---uuuuu | ||
008 | 150324s2000 |||| o||u| ||||||ger d | ||
020 | |a 9783642597336 |c Online |9 978-3-642-59733-6 | ||
020 | |a 9783540668893 |c Print |9 978-3-540-66889-3 | ||
024 | 7 | |a 10.1007/978-3-642-59733-6 |2 doi | |
035 | |a (OCoLC)1184404468 | ||
035 | |a (DE-599)BVBBV042446122 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a ger | |
049 | |a DE-91 |a DE-634 |a DE-860 |a DE-92 |a DE-703 |a DE-706 |a DE-Aug4 |a DE-739 |a DE-19 |a DE-83 | ||
082 | 0 | |a 519 |2 23 | |
084 | |a NAT 000 |2 stub | ||
100 | 1 | |a Seydel, Rüdiger |d 1947- |e Verfasser |0 (DE-588)13662782X |4 aut | |
245 | 1 | 0 | |a Einführung in die numerische Berechnung von Finanz-Derivaten |b Computational Finance |c von Rüdiger Seydel |
264 | 1 | |a Berlin, Heidelberg |b Springer Berlin Heidelberg |c 2000 | |
300 | |a 1 Online-Ressource (XII, 154S. 34 Abb) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a Springer-Lehrbuch |x 0937-7433 | |
500 | |a In jüngster Zeit haben Finanz-Derivate eine starke Verbreitung erfahren. Das vorliegende Lehrbuch bietet eine elementare Einführung in diejenigen Methoden der Numerik und des Wissenschaftichen Rechnens, die insbesondere für die Berechung von Optionspreisen grundlegend sind. Nach einer kurzen Beschreibung der Modellierung von Standard-Optionen folgt als erster Hauptteil die numerische Simulation der Stochastik mit der Berechnung von Zufallszahlen, der Integration von stochastischen Differentialgleichungen und dem Einsatz von Monte-Carlo-Verfahren. Der zweite Hauptteil konzentriert sich auf die Numerik zu den Black-Scholes Ansätzen mit partiellen Differential-Gleichungen und -Ungleichungen. Dabei werden Lösungsalgorithmen von Differenzenverfahren und von Finite-Element-Verfahren erklärt. Übungsaufgaben, instruktive Abbildungen sowie themenbezogene Anhänge runden das Buch ab. Lösungshinweise zu ausgewählten Aufgaben werden unter http://www.mi.uni-koeln.de/numerik/compfin/ bereitgestellt | ||
650 | 4 | |a Mathematics | |
650 | 4 | |a Finance | |
650 | 4 | |a Numerical analysis | |
650 | 4 | |a Quantitative Finance | |
650 | 4 | |a Numerical Analysis | |
650 | 4 | |a Finance/Investment/Banking | |
650 | 4 | |a Mathematik | |
650 | 0 | 7 | |a Finanzmathematik |0 (DE-588)4017195-4 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Derivat |g Wertpapier |0 (DE-588)4381572-8 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Wertpapieranalyse |0 (DE-588)4124458-8 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Optionspreistheorie |0 (DE-588)4135346-8 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Numerisches Verfahren |0 (DE-588)4128130-5 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Derivat |g Wertpapier |0 (DE-588)4381572-8 |D s |
689 | 0 | 1 | |a Wertpapieranalyse |0 (DE-588)4124458-8 |D s |
689 | 0 | 2 | |a Optionspreistheorie |0 (DE-588)4135346-8 |D s |
689 | 0 | 3 | |a Numerisches Verfahren |0 (DE-588)4128130-5 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
689 | 1 | 0 | |a Finanzmathematik |0 (DE-588)4017195-4 |D s |
689 | 1 | 1 | |a Derivat |g Wertpapier |0 (DE-588)4381572-8 |D s |
689 | 1 | |8 2\p |5 DE-604 | |
856 | 4 | 0 | |u https://doi.org/10.1007/978-3-642-59733-6 |x Verlag |3 Volltext |
912 | |a ZDB-2-SNA |a ZDB-2-BAD | ||
940 | 1 | |q ZDB-2-SNA_Archive | |
940 | 1 | |q ZDB-2-SNA_2000/2004 | |
999 | |a oai:aleph.bib-bvb.de:BVB01-027881369 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 2\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk |
Datensatz im Suchindex
_version_ | 1804153143193239552 |
---|---|
any_adam_object | |
author | Seydel, Rüdiger 1947- |
author_GND | (DE-588)13662782X |
author_facet | Seydel, Rüdiger 1947- |
author_role | aut |
author_sort | Seydel, Rüdiger 1947- |
author_variant | r s rs |
building | Verbundindex |
bvnumber | BV042446122 |
classification_tum | NAT 000 |
collection | ZDB-2-SNA ZDB-2-BAD |
ctrlnum | (OCoLC)1184404468 (DE-599)BVBBV042446122 |
dewey-full | 519 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 519 - Probabilities and applied mathematics |
dewey-raw | 519 |
dewey-search | 519 |
dewey-sort | 3519 |
dewey-tens | 510 - Mathematics |
discipline | Allgemeine Naturwissenschaft Mathematik |
doi_str_mv | 10.1007/978-3-642-59733-6 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03478nmm a2200637zc 4500</leader><controlfield tag="001">BV042446122</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20160915 </controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">150324s2000 |||| o||u| ||||||ger d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783642597336</subfield><subfield code="c">Online</subfield><subfield code="9">978-3-642-59733-6</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783540668893</subfield><subfield code="c">Print</subfield><subfield code="9">978-3-540-66889-3</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/978-3-642-59733-6</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1184404468</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV042446122</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">ger</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-91</subfield><subfield code="a">DE-634</subfield><subfield code="a">DE-860</subfield><subfield code="a">DE-92</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-706</subfield><subfield code="a">DE-Aug4</subfield><subfield code="a">DE-739</subfield><subfield code="a">DE-19</subfield><subfield code="a">DE-83</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">519</subfield><subfield code="2">23</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">NAT 000</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Seydel, Rüdiger</subfield><subfield code="d">1947-</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)13662782X</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Einführung in die numerische Berechnung von Finanz-Derivaten</subfield><subfield code="b">Computational Finance</subfield><subfield code="c">von Rüdiger Seydel</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Berlin, Heidelberg</subfield><subfield code="b">Springer Berlin Heidelberg</subfield><subfield code="c">2000</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (XII, 154S. 34 Abb)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Springer-Lehrbuch</subfield><subfield code="x">0937-7433</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">In jüngster Zeit haben Finanz-Derivate eine starke Verbreitung erfahren. Das vorliegende Lehrbuch bietet eine elementare Einführung in diejenigen Methoden der Numerik und des Wissenschaftichen Rechnens, die insbesondere für die Berechung von Optionspreisen grundlegend sind. Nach einer kurzen Beschreibung der Modellierung von Standard-Optionen folgt als erster Hauptteil die numerische Simulation der Stochastik mit der Berechnung von Zufallszahlen, der Integration von stochastischen Differentialgleichungen und dem Einsatz von Monte-Carlo-Verfahren. Der zweite Hauptteil konzentriert sich auf die Numerik zu den Black-Scholes Ansätzen mit partiellen Differential-Gleichungen und -Ungleichungen. Dabei werden Lösungsalgorithmen von Differenzenverfahren und von Finite-Element-Verfahren erklärt. Übungsaufgaben, instruktive Abbildungen sowie themenbezogene Anhänge runden das Buch ab. Lösungshinweise zu ausgewählten Aufgaben werden unter http://www.mi.uni-koeln.de/numerik/compfin/ bereitgestellt</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Finance</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Numerical analysis</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Quantitative Finance</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Numerical Analysis</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Finance/Investment/Banking</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematik</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Finanzmathematik</subfield><subfield code="0">(DE-588)4017195-4</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Derivat</subfield><subfield code="g">Wertpapier</subfield><subfield code="0">(DE-588)4381572-8</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Wertpapieranalyse</subfield><subfield code="0">(DE-588)4124458-8</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Optionspreistheorie</subfield><subfield code="0">(DE-588)4135346-8</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Numerisches Verfahren</subfield><subfield code="0">(DE-588)4128130-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Derivat</subfield><subfield code="g">Wertpapier</subfield><subfield code="0">(DE-588)4381572-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Wertpapieranalyse</subfield><subfield code="0">(DE-588)4124458-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="2"><subfield code="a">Optionspreistheorie</subfield><subfield code="0">(DE-588)4135346-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="3"><subfield code="a">Numerisches Verfahren</subfield><subfield code="0">(DE-588)4128130-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Finanzmathematik</subfield><subfield code="0">(DE-588)4017195-4</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2="1"><subfield code="a">Derivat</subfield><subfield code="g">Wertpapier</subfield><subfield code="0">(DE-588)4381572-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1007/978-3-642-59733-6</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-2-SNA</subfield><subfield code="a">ZDB-2-BAD</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">ZDB-2-SNA_Archive</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">ZDB-2-SNA_2000/2004</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-027881369</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield></record></collection> |
id | DE-604.BV042446122 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T01:21:55Z |
institution | BVB |
isbn | 9783642597336 9783540668893 |
issn | 0937-7433 |
language | German |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-027881369 |
oclc_num | 1184404468 |
open_access_boolean | |
owner | DE-91 DE-BY-TUM DE-634 DE-860 DE-92 DE-703 DE-706 DE-Aug4 DE-739 DE-19 DE-BY-UBM DE-83 |
owner_facet | DE-91 DE-BY-TUM DE-634 DE-860 DE-92 DE-703 DE-706 DE-Aug4 DE-739 DE-19 DE-BY-UBM DE-83 |
physical | 1 Online-Ressource (XII, 154S. 34 Abb) |
psigel | ZDB-2-SNA ZDB-2-BAD ZDB-2-SNA_Archive ZDB-2-SNA_2000/2004 |
publishDate | 2000 |
publishDateSearch | 2000 |
publishDateSort | 2000 |
publisher | Springer Berlin Heidelberg |
record_format | marc |
series2 | Springer-Lehrbuch |
spelling | Seydel, Rüdiger 1947- Verfasser (DE-588)13662782X aut Einführung in die numerische Berechnung von Finanz-Derivaten Computational Finance von Rüdiger Seydel Berlin, Heidelberg Springer Berlin Heidelberg 2000 1 Online-Ressource (XII, 154S. 34 Abb) txt rdacontent c rdamedia cr rdacarrier Springer-Lehrbuch 0937-7433 In jüngster Zeit haben Finanz-Derivate eine starke Verbreitung erfahren. Das vorliegende Lehrbuch bietet eine elementare Einführung in diejenigen Methoden der Numerik und des Wissenschaftichen Rechnens, die insbesondere für die Berechung von Optionspreisen grundlegend sind. Nach einer kurzen Beschreibung der Modellierung von Standard-Optionen folgt als erster Hauptteil die numerische Simulation der Stochastik mit der Berechnung von Zufallszahlen, der Integration von stochastischen Differentialgleichungen und dem Einsatz von Monte-Carlo-Verfahren. Der zweite Hauptteil konzentriert sich auf die Numerik zu den Black-Scholes Ansätzen mit partiellen Differential-Gleichungen und -Ungleichungen. Dabei werden Lösungsalgorithmen von Differenzenverfahren und von Finite-Element-Verfahren erklärt. Übungsaufgaben, instruktive Abbildungen sowie themenbezogene Anhänge runden das Buch ab. Lösungshinweise zu ausgewählten Aufgaben werden unter http://www.mi.uni-koeln.de/numerik/compfin/ bereitgestellt Mathematics Finance Numerical analysis Quantitative Finance Numerical Analysis Finance/Investment/Banking Mathematik Finanzmathematik (DE-588)4017195-4 gnd rswk-swf Derivat Wertpapier (DE-588)4381572-8 gnd rswk-swf Wertpapieranalyse (DE-588)4124458-8 gnd rswk-swf Optionspreistheorie (DE-588)4135346-8 gnd rswk-swf Numerisches Verfahren (DE-588)4128130-5 gnd rswk-swf Derivat Wertpapier (DE-588)4381572-8 s Wertpapieranalyse (DE-588)4124458-8 s Optionspreistheorie (DE-588)4135346-8 s Numerisches Verfahren (DE-588)4128130-5 s 1\p DE-604 Finanzmathematik (DE-588)4017195-4 s 2\p DE-604 https://doi.org/10.1007/978-3-642-59733-6 Verlag Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 2\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Seydel, Rüdiger 1947- Einführung in die numerische Berechnung von Finanz-Derivaten Computational Finance Mathematics Finance Numerical analysis Quantitative Finance Numerical Analysis Finance/Investment/Banking Mathematik Finanzmathematik (DE-588)4017195-4 gnd Derivat Wertpapier (DE-588)4381572-8 gnd Wertpapieranalyse (DE-588)4124458-8 gnd Optionspreistheorie (DE-588)4135346-8 gnd Numerisches Verfahren (DE-588)4128130-5 gnd |
subject_GND | (DE-588)4017195-4 (DE-588)4381572-8 (DE-588)4124458-8 (DE-588)4135346-8 (DE-588)4128130-5 |
title | Einführung in die numerische Berechnung von Finanz-Derivaten Computational Finance |
title_auth | Einführung in die numerische Berechnung von Finanz-Derivaten Computational Finance |
title_exact_search | Einführung in die numerische Berechnung von Finanz-Derivaten Computational Finance |
title_full | Einführung in die numerische Berechnung von Finanz-Derivaten Computational Finance von Rüdiger Seydel |
title_fullStr | Einführung in die numerische Berechnung von Finanz-Derivaten Computational Finance von Rüdiger Seydel |
title_full_unstemmed | Einführung in die numerische Berechnung von Finanz-Derivaten Computational Finance von Rüdiger Seydel |
title_short | Einführung in die numerische Berechnung von Finanz-Derivaten |
title_sort | einfuhrung in die numerische berechnung von finanz derivaten computational finance |
title_sub | Computational Finance |
topic | Mathematics Finance Numerical analysis Quantitative Finance Numerical Analysis Finance/Investment/Banking Mathematik Finanzmathematik (DE-588)4017195-4 gnd Derivat Wertpapier (DE-588)4381572-8 gnd Wertpapieranalyse (DE-588)4124458-8 gnd Optionspreistheorie (DE-588)4135346-8 gnd Numerisches Verfahren (DE-588)4128130-5 gnd |
topic_facet | Mathematics Finance Numerical analysis Quantitative Finance Numerical Analysis Finance/Investment/Banking Mathematik Finanzmathematik Derivat Wertpapier Wertpapieranalyse Optionspreistheorie Numerisches Verfahren |
url | https://doi.org/10.1007/978-3-642-59733-6 |
work_keys_str_mv | AT seydelrudiger einfuhrungindienumerischeberechnungvonfinanzderivatencomputationalfinance |