Darstellende Geometrie:
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | German |
Veröffentlicht: |
Berlin, Heidelberg
Springer Berlin Heidelberg
1964
|
Ausgabe: | 2. verbesserte Auflage |
Schriftenreihe: | Die Grundlehren der Mathematischen Wissenschaften, In Einzeldarstellungen mit Besonderer Berücksichtigung der Anwendungsgebiete
92 |
Schlagworte: | |
Online-Zugang: | Volltext |
Beschreibung: | Grundbegriffe Die Darstellende Geometrie untersuchtAbbildungen des dreidimensionalen Raumes auf ein ebenes, also zweidimensionales Zeichen/eId. Um dabei die konstruktiven Methoden der ebenen Geometrie ausnutzen zu können, bevorzugt man Zuordnungen, bei denen Geraden des Raumes Geraden der Ebene entsprechen. Nur von solchen Abbildungen handelt dieses Buch. Rehbock, "Darstellende Geometrie" 2. Auf!. 2 Einleitung Punkte, Geraden und Ebenen heißen die Elemente des dreidimensio nalen Raumes. Wir bezeichnen Punkte mit großen lateinischen, Geraden mit kleinen lateinischen und Ebenen mit kleinen griechischen Buchstaben. Von den Ebenen sind in den Skizzen meist nur geradlinig begrenzte, kurz; "umrandete" Stücke dargestellt. Für unsere konstruktiven Zwecke ist aber jede Ebene wie jede Gerade unbegrenzt zu denken. I. Liegt ein Punkt P auf einer Geraden g, so heißt Pein g-Punkt, l g eine P-Gerade . Liegt P in einer Ebene e, so ist Pein e-Punkt, e eine P-Ebene. Und liegt endlich eine Gerade g in einer Ebene e, so ist g eine e-Gerade, e eine g-Ebene. Bei festem e oder P oder g heißt die Gesamtheit aller e-Punkte und e-Geraden ein Feld, aller P-Ebenen und P-Geraden ein Bündel, aller g-Ebenen ein Ebenenbüschel, aller g-Punkte eine Punktreihe |
Beschreibung: | 1 Online-Ressource (XV, 235 S.) |
ISBN: | 9783642533792 9783642533396 |
DOI: | 10.1007/978-3-642-53379-2 |
Internformat
MARC
LEADER | 00000nmm a2200000zcb4500 | ||
---|---|---|---|
001 | BV042445789 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 150324s1964 |||| o||u| ||||||ger d | ||
020 | |a 9783642533792 |c Online |9 978-3-642-53379-2 | ||
020 | |a 9783642533396 |c Print |9 978-3-642-53339-6 | ||
024 | 7 | |a 10.1007/978-3-642-53379-2 |2 doi | |
035 | |a (OCoLC)863920192 | ||
035 | |a (DE-599)BVBBV042445789 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a ger | |
049 | |a DE-91 |a DE-634 |a DE-92 |a DE-706 | ||
082 | 0 | |a 510 |2 23 | |
084 | |a NAT 000 |2 stub | ||
100 | 1 | |a Rehbock, Fritz |e Verfasser |4 aut | |
245 | 1 | 0 | |a Darstellende Geometrie |c von Fritz Rehbock |
250 | |a 2. verbesserte Auflage | ||
264 | 1 | |a Berlin, Heidelberg |b Springer Berlin Heidelberg |c 1964 | |
300 | |a 1 Online-Ressource (XV, 235 S.) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a Die Grundlehren der Mathematischen Wissenschaften, In Einzeldarstellungen mit Besonderer Berücksichtigung der Anwendungsgebiete |v 92 | |
500 | |a Grundbegriffe Die Darstellende Geometrie untersuchtAbbildungen des dreidimensionalen Raumes auf ein ebenes, also zweidimensionales Zeichen/eId. Um dabei die konstruktiven Methoden der ebenen Geometrie ausnutzen zu können, bevorzugt man Zuordnungen, bei denen Geraden des Raumes Geraden der Ebene entsprechen. Nur von solchen Abbildungen handelt dieses Buch. Rehbock, "Darstellende Geometrie" 2. Auf!. 2 Einleitung Punkte, Geraden und Ebenen heißen die Elemente des dreidimensio nalen Raumes. Wir bezeichnen Punkte mit großen lateinischen, Geraden mit kleinen lateinischen und Ebenen mit kleinen griechischen Buchstaben. Von den Ebenen sind in den Skizzen meist nur geradlinig begrenzte, kurz; "umrandete" Stücke dargestellt. Für unsere konstruktiven Zwecke ist aber jede Ebene wie jede Gerade unbegrenzt zu denken. I. Liegt ein Punkt P auf einer Geraden g, so heißt Pein g-Punkt, l g eine P-Gerade . Liegt P in einer Ebene e, so ist Pein e-Punkt, e eine P-Ebene. Und liegt endlich eine Gerade g in einer Ebene e, so ist g eine e-Gerade, e eine g-Ebene. Bei festem e oder P oder g heißt die Gesamtheit aller e-Punkte und e-Geraden ein Feld, aller P-Ebenen und P-Geraden ein Bündel, aller g-Ebenen ein Ebenenbüschel, aller g-Punkte eine Punktreihe | ||
650 | 4 | |a Mathematics | |
650 | 4 | |a Mathematics, general | |
650 | 4 | |a Mathematik | |
650 | 0 | 7 | |a Darstellende Geometrie |0 (DE-588)4128330-2 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Darstellende Geometrie |0 (DE-588)4128330-2 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
856 | 4 | 0 | |u https://doi.org/10.1007/978-3-642-53379-2 |x Verlag |3 Volltext |
912 | |a ZDB-2-SNA |a ZDB-2-BAD | ||
940 | 1 | |q ZDB-2-SNA_Archive | |
999 | |a oai:aleph.bib-bvb.de:BVB01-027881036 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk |
Datensatz im Suchindex
_version_ | 1804153142444556288 |
---|---|
any_adam_object | |
author | Rehbock, Fritz |
author_facet | Rehbock, Fritz |
author_role | aut |
author_sort | Rehbock, Fritz |
author_variant | f r fr |
building | Verbundindex |
bvnumber | BV042445789 |
classification_tum | NAT 000 |
collection | ZDB-2-SNA ZDB-2-BAD |
ctrlnum | (OCoLC)863920192 (DE-599)BVBBV042445789 |
dewey-full | 510 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 510 - Mathematics |
dewey-raw | 510 |
dewey-search | 510 |
dewey-sort | 3510 |
dewey-tens | 510 - Mathematics |
discipline | Allgemeine Naturwissenschaft Mathematik |
doi_str_mv | 10.1007/978-3-642-53379-2 |
edition | 2. verbesserte Auflage |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02877nmm a2200457zcb4500</leader><controlfield tag="001">BV042445789</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">150324s1964 |||| o||u| ||||||ger d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783642533792</subfield><subfield code="c">Online</subfield><subfield code="9">978-3-642-53379-2</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783642533396</subfield><subfield code="c">Print</subfield><subfield code="9">978-3-642-53339-6</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/978-3-642-53379-2</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)863920192</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV042445789</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">ger</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-91</subfield><subfield code="a">DE-634</subfield><subfield code="a">DE-92</subfield><subfield code="a">DE-706</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">510</subfield><subfield code="2">23</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">NAT 000</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Rehbock, Fritz</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Darstellende Geometrie</subfield><subfield code="c">von Fritz Rehbock</subfield></datafield><datafield tag="250" ind1=" " ind2=" "><subfield code="a">2. verbesserte Auflage</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Berlin, Heidelberg</subfield><subfield code="b">Springer Berlin Heidelberg</subfield><subfield code="c">1964</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (XV, 235 S.)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Die Grundlehren der Mathematischen Wissenschaften, In Einzeldarstellungen mit Besonderer Berücksichtigung der Anwendungsgebiete</subfield><subfield code="v">92</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Grundbegriffe Die Darstellende Geometrie untersuchtAbbildungen des dreidimensionalen Raumes auf ein ebenes, also zweidimensionales Zeichen/eId. Um dabei die konstruktiven Methoden der ebenen Geometrie ausnutzen zu können, bevorzugt man Zuordnungen, bei denen Geraden des Raumes Geraden der Ebene entsprechen. Nur von solchen Abbildungen handelt dieses Buch. Rehbock, "Darstellende Geometrie" 2. Auf!. 2 Einleitung Punkte, Geraden und Ebenen heißen die Elemente des dreidimensio nalen Raumes. Wir bezeichnen Punkte mit großen lateinischen, Geraden mit kleinen lateinischen und Ebenen mit kleinen griechischen Buchstaben. Von den Ebenen sind in den Skizzen meist nur geradlinig begrenzte, kurz; "umrandete" Stücke dargestellt. Für unsere konstruktiven Zwecke ist aber jede Ebene wie jede Gerade unbegrenzt zu denken. I. Liegt ein Punkt P auf einer Geraden g, so heißt Pein g-Punkt, l g eine P-Gerade . Liegt P in einer Ebene e, so ist Pein e-Punkt, e eine P-Ebene. Und liegt endlich eine Gerade g in einer Ebene e, so ist g eine e-Gerade, e eine g-Ebene. Bei festem e oder P oder g heißt die Gesamtheit aller e-Punkte und e-Geraden ein Feld, aller P-Ebenen und P-Geraden ein Bündel, aller g-Ebenen ein Ebenenbüschel, aller g-Punkte eine Punktreihe</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematics, general</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematik</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Darstellende Geometrie</subfield><subfield code="0">(DE-588)4128330-2</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Darstellende Geometrie</subfield><subfield code="0">(DE-588)4128330-2</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1007/978-3-642-53379-2</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-2-SNA</subfield><subfield code="a">ZDB-2-BAD</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">ZDB-2-SNA_Archive</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-027881036</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield></record></collection> |
id | DE-604.BV042445789 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T01:21:54Z |
institution | BVB |
isbn | 9783642533792 9783642533396 |
language | German |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-027881036 |
oclc_num | 863920192 |
open_access_boolean | |
owner | DE-91 DE-BY-TUM DE-634 DE-92 DE-706 |
owner_facet | DE-91 DE-BY-TUM DE-634 DE-92 DE-706 |
physical | 1 Online-Ressource (XV, 235 S.) |
psigel | ZDB-2-SNA ZDB-2-BAD ZDB-2-SNA_Archive |
publishDate | 1964 |
publishDateSearch | 1964 |
publishDateSort | 1964 |
publisher | Springer Berlin Heidelberg |
record_format | marc |
series2 | Die Grundlehren der Mathematischen Wissenschaften, In Einzeldarstellungen mit Besonderer Berücksichtigung der Anwendungsgebiete |
spelling | Rehbock, Fritz Verfasser aut Darstellende Geometrie von Fritz Rehbock 2. verbesserte Auflage Berlin, Heidelberg Springer Berlin Heidelberg 1964 1 Online-Ressource (XV, 235 S.) txt rdacontent c rdamedia cr rdacarrier Die Grundlehren der Mathematischen Wissenschaften, In Einzeldarstellungen mit Besonderer Berücksichtigung der Anwendungsgebiete 92 Grundbegriffe Die Darstellende Geometrie untersuchtAbbildungen des dreidimensionalen Raumes auf ein ebenes, also zweidimensionales Zeichen/eId. Um dabei die konstruktiven Methoden der ebenen Geometrie ausnutzen zu können, bevorzugt man Zuordnungen, bei denen Geraden des Raumes Geraden der Ebene entsprechen. Nur von solchen Abbildungen handelt dieses Buch. Rehbock, "Darstellende Geometrie" 2. Auf!. 2 Einleitung Punkte, Geraden und Ebenen heißen die Elemente des dreidimensio nalen Raumes. Wir bezeichnen Punkte mit großen lateinischen, Geraden mit kleinen lateinischen und Ebenen mit kleinen griechischen Buchstaben. Von den Ebenen sind in den Skizzen meist nur geradlinig begrenzte, kurz; "umrandete" Stücke dargestellt. Für unsere konstruktiven Zwecke ist aber jede Ebene wie jede Gerade unbegrenzt zu denken. I. Liegt ein Punkt P auf einer Geraden g, so heißt Pein g-Punkt, l g eine P-Gerade . Liegt P in einer Ebene e, so ist Pein e-Punkt, e eine P-Ebene. Und liegt endlich eine Gerade g in einer Ebene e, so ist g eine e-Gerade, e eine g-Ebene. Bei festem e oder P oder g heißt die Gesamtheit aller e-Punkte und e-Geraden ein Feld, aller P-Ebenen und P-Geraden ein Bündel, aller g-Ebenen ein Ebenenbüschel, aller g-Punkte eine Punktreihe Mathematics Mathematics, general Mathematik Darstellende Geometrie (DE-588)4128330-2 gnd rswk-swf Darstellende Geometrie (DE-588)4128330-2 s 1\p DE-604 https://doi.org/10.1007/978-3-642-53379-2 Verlag Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Rehbock, Fritz Darstellende Geometrie Mathematics Mathematics, general Mathematik Darstellende Geometrie (DE-588)4128330-2 gnd |
subject_GND | (DE-588)4128330-2 |
title | Darstellende Geometrie |
title_auth | Darstellende Geometrie |
title_exact_search | Darstellende Geometrie |
title_full | Darstellende Geometrie von Fritz Rehbock |
title_fullStr | Darstellende Geometrie von Fritz Rehbock |
title_full_unstemmed | Darstellende Geometrie von Fritz Rehbock |
title_short | Darstellende Geometrie |
title_sort | darstellende geometrie |
topic | Mathematics Mathematics, general Mathematik Darstellende Geometrie (DE-588)4128330-2 gnd |
topic_facet | Mathematics Mathematics, general Mathematik Darstellende Geometrie |
url | https://doi.org/10.1007/978-3-642-53379-2 |
work_keys_str_mv | AT rehbockfritz darstellendegeometrie |