Special Relativity:
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | German |
Veröffentlicht: |
Berlin, Heidelberg
Springer Berlin Heidelberg
1992
|
Schriftenreihe: | Lecture Notes in Physics Monographs
6 |
Schlagworte: | |
Online-Zugang: | Volltext |
Beschreibung: | These lectures were given to third-year mathematics undergraduates at Oxford in the late 1970s and early 1980s. The notes were produced originally in mimeographed form by the Mathematical Institute at Oxford in 1977, and in a revised edition in 1980. I have made further minor changes and corrections in this edition, and added some examples and exercises from problem sheets given out in lectures by Roger Penrose and Paul Tod. Special relativity provides one of the more interesting pedagogical challenges. This particular course was given to students with a strong mathematical background who already had a good grounding in classical mathematical physics, but who had not yet met relativity. The emphasis is on the use ofcoordinate-free and tensorial methods: I tried to avoid the traditional arguments based on the standard Lorentz transformation, and to encourage students to look at problems from a four-dimensional point of view. I did not attempt to 'derive' relativity from a minimal set of axioms, but instead concentrated on stating clearly the basic principles and assumptions. Elsewhere in the world, relativity is usually introduced in a more elementary way earlier in undergraduate courses, and even at Oxford, it is now part of the second-year syllabus in mathematics. I doubt, therefore, that anyone would contemplate giving a lecture course exactly along these lines. Nevertheless, I hope that the notes may provide one or two ideas. I have not attempted to produce a polished textbook |
Beschreibung: | 1 Online-Ressource (VIII, 88 S.) |
ISBN: | 9783540466765 9783540550495 |
ISSN: | 0940-7677 |
DOI: | 10.1007/978-3-540-46676-5 |
Internformat
MARC
LEADER | 00000nmm a2200000zcb4500 | ||
---|---|---|---|
001 | BV042444990 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 150324s1992 |||| o||u| ||||||ger d | ||
020 | |a 9783540466765 |c Online |9 978-3-540-46676-5 | ||
020 | |a 9783540550495 |c Print |9 978-3-540-55049-5 | ||
024 | 7 | |a 10.1007/978-3-540-46676-5 |2 doi | |
035 | |a (OCoLC)849794413 | ||
035 | |a (DE-599)BVBBV042444990 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a ger | |
049 | |a DE-91 |a DE-634 |a DE-92 |a DE-706 |a DE-19 | ||
082 | 0 | |a 523.1 |2 23 | |
084 | |a NAT 000 |2 stub | ||
100 | 1 | |a Woodhouse, Nicholas M. J. |e Verfasser |4 aut | |
245 | 1 | 0 | |a Special Relativity |c von Nicholas M. J. Woodhouse |
264 | 1 | |a Berlin, Heidelberg |b Springer Berlin Heidelberg |c 1992 | |
300 | |a 1 Online-Ressource (VIII, 88 S.) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a Lecture Notes in Physics Monographs |v 6 |x 0940-7677 | |
500 | |a These lectures were given to third-year mathematics undergraduates at Oxford in the late 1970s and early 1980s. The notes were produced originally in mimeographed form by the Mathematical Institute at Oxford in 1977, and in a revised edition in 1980. I have made further minor changes and corrections in this edition, and added some examples and exercises from problem sheets given out in lectures by Roger Penrose and Paul Tod. Special relativity provides one of the more interesting pedagogical challenges. This particular course was given to students with a strong mathematical background who already had a good grounding in classical mathematical physics, but who had not yet met relativity. The emphasis is on the use ofcoordinate-free and tensorial methods: I tried to avoid the traditional arguments based on the standard Lorentz transformation, and to encourage students to look at problems from a four-dimensional point of view. I did not attempt to 'derive' relativity from a minimal set of axioms, but instead concentrated on stating clearly the basic principles and assumptions. Elsewhere in the world, relativity is usually introduced in a more elementary way earlier in undergraduate courses, and even at Oxford, it is now part of the second-year syllabus in mathematics. I doubt, therefore, that anyone would contemplate giving a lecture course exactly along these lines. Nevertheless, I hope that the notes may provide one or two ideas. I have not attempted to produce a polished textbook | ||
650 | 4 | |a Physics | |
650 | 4 | |a Mathematical physics | |
650 | 4 | |a Relativity (Physics) | |
650 | 4 | |a Relativity and Cosmology | |
650 | 4 | |a Mathematical and Computational Physics | |
650 | 4 | |a Mathematische Physik | |
650 | 0 | 7 | |a Spezielle Relativitätstheorie |0 (DE-588)4182215-8 |2 gnd |9 rswk-swf |
655 | 7 | |8 1\p |0 (DE-588)4123623-3 |a Lehrbuch |2 gnd-content | |
689 | 0 | 0 | |a Spezielle Relativitätstheorie |0 (DE-588)4182215-8 |D s |
689 | 0 | |8 2\p |5 DE-604 | |
856 | 4 | 0 | |u https://doi.org/10.1007/978-3-540-46676-5 |x Verlag |3 Volltext |
912 | |a ZDB-2-SNA |a ZDB-2-LNP |a ZDB-2-BAD | ||
940 | 1 | |q ZDB-2-SNA_Archive | |
999 | |a oai:aleph.bib-bvb.de:BVB01-027880237 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 2\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk |
Datensatz im Suchindex
_version_ | 1804153140717551616 |
---|---|
any_adam_object | |
author | Woodhouse, Nicholas M. J. |
author_facet | Woodhouse, Nicholas M. J. |
author_role | aut |
author_sort | Woodhouse, Nicholas M. J. |
author_variant | n m j w nmj nmjw |
building | Verbundindex |
bvnumber | BV042444990 |
classification_tum | NAT 000 |
collection | ZDB-2-SNA ZDB-2-LNP ZDB-2-BAD |
ctrlnum | (OCoLC)849794413 (DE-599)BVBBV042444990 |
dewey-full | 523.1 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 523 - Specific celestial bodies and phenomena |
dewey-raw | 523.1 |
dewey-search | 523.1 |
dewey-sort | 3523.1 |
dewey-tens | 520 - Astronomy and allied sciences |
discipline | Physik Allgemeine Naturwissenschaft |
doi_str_mv | 10.1007/978-3-540-46676-5 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03345nmm a2200505zcb4500</leader><controlfield tag="001">BV042444990</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">150324s1992 |||| o||u| ||||||ger d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783540466765</subfield><subfield code="c">Online</subfield><subfield code="9">978-3-540-46676-5</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783540550495</subfield><subfield code="c">Print</subfield><subfield code="9">978-3-540-55049-5</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/978-3-540-46676-5</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)849794413</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV042444990</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">ger</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-91</subfield><subfield code="a">DE-634</subfield><subfield code="a">DE-92</subfield><subfield code="a">DE-706</subfield><subfield code="a">DE-19</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">523.1</subfield><subfield code="2">23</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">NAT 000</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Woodhouse, Nicholas M. J.</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Special Relativity</subfield><subfield code="c">von Nicholas M. J. Woodhouse</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Berlin, Heidelberg</subfield><subfield code="b">Springer Berlin Heidelberg</subfield><subfield code="c">1992</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (VIII, 88 S.)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Lecture Notes in Physics Monographs</subfield><subfield code="v">6</subfield><subfield code="x">0940-7677</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">These lectures were given to third-year mathematics undergraduates at Oxford in the late 1970s and early 1980s. The notes were produced originally in mimeographed form by the Mathematical Institute at Oxford in 1977, and in a revised edition in 1980. I have made further minor changes and corrections in this edition, and added some examples and exercises from problem sheets given out in lectures by Roger Penrose and Paul Tod. Special relativity provides one of the more interesting pedagogical challenges. This particular course was given to students with a strong mathematical background who already had a good grounding in classical mathematical physics, but who had not yet met relativity. The emphasis is on the use ofcoordinate-free and tensorial methods: I tried to avoid the traditional arguments based on the standard Lorentz transformation, and to encourage students to look at problems from a four-dimensional point of view. I did not attempt to 'derive' relativity from a minimal set of axioms, but instead concentrated on stating clearly the basic principles and assumptions. Elsewhere in the world, relativity is usually introduced in a more elementary way earlier in undergraduate courses, and even at Oxford, it is now part of the second-year syllabus in mathematics. I doubt, therefore, that anyone would contemplate giving a lecture course exactly along these lines. Nevertheless, I hope that the notes may provide one or two ideas. I have not attempted to produce a polished textbook</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Physics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematical physics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Relativity (Physics)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Relativity and Cosmology</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematical and Computational Physics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematische Physik</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Spezielle Relativitätstheorie</subfield><subfield code="0">(DE-588)4182215-8</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="655" ind1=" " ind2="7"><subfield code="8">1\p</subfield><subfield code="0">(DE-588)4123623-3</subfield><subfield code="a">Lehrbuch</subfield><subfield code="2">gnd-content</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Spezielle Relativitätstheorie</subfield><subfield code="0">(DE-588)4182215-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">2\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1007/978-3-540-46676-5</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-2-SNA</subfield><subfield code="a">ZDB-2-LNP</subfield><subfield code="a">ZDB-2-BAD</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">ZDB-2-SNA_Archive</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-027880237</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield></record></collection> |
genre | 1\p (DE-588)4123623-3 Lehrbuch gnd-content |
genre_facet | Lehrbuch |
id | DE-604.BV042444990 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T01:21:53Z |
institution | BVB |
isbn | 9783540466765 9783540550495 |
issn | 0940-7677 |
language | German |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-027880237 |
oclc_num | 849794413 |
open_access_boolean | |
owner | DE-91 DE-BY-TUM DE-634 DE-92 DE-706 DE-19 DE-BY-UBM |
owner_facet | DE-91 DE-BY-TUM DE-634 DE-92 DE-706 DE-19 DE-BY-UBM |
physical | 1 Online-Ressource (VIII, 88 S.) |
psigel | ZDB-2-SNA ZDB-2-LNP ZDB-2-BAD ZDB-2-SNA_Archive |
publishDate | 1992 |
publishDateSearch | 1992 |
publishDateSort | 1992 |
publisher | Springer Berlin Heidelberg |
record_format | marc |
series2 | Lecture Notes in Physics Monographs |
spelling | Woodhouse, Nicholas M. J. Verfasser aut Special Relativity von Nicholas M. J. Woodhouse Berlin, Heidelberg Springer Berlin Heidelberg 1992 1 Online-Ressource (VIII, 88 S.) txt rdacontent c rdamedia cr rdacarrier Lecture Notes in Physics Monographs 6 0940-7677 These lectures were given to third-year mathematics undergraduates at Oxford in the late 1970s and early 1980s. The notes were produced originally in mimeographed form by the Mathematical Institute at Oxford in 1977, and in a revised edition in 1980. I have made further minor changes and corrections in this edition, and added some examples and exercises from problem sheets given out in lectures by Roger Penrose and Paul Tod. Special relativity provides one of the more interesting pedagogical challenges. This particular course was given to students with a strong mathematical background who already had a good grounding in classical mathematical physics, but who had not yet met relativity. The emphasis is on the use ofcoordinate-free and tensorial methods: I tried to avoid the traditional arguments based on the standard Lorentz transformation, and to encourage students to look at problems from a four-dimensional point of view. I did not attempt to 'derive' relativity from a minimal set of axioms, but instead concentrated on stating clearly the basic principles and assumptions. Elsewhere in the world, relativity is usually introduced in a more elementary way earlier in undergraduate courses, and even at Oxford, it is now part of the second-year syllabus in mathematics. I doubt, therefore, that anyone would contemplate giving a lecture course exactly along these lines. Nevertheless, I hope that the notes may provide one or two ideas. I have not attempted to produce a polished textbook Physics Mathematical physics Relativity (Physics) Relativity and Cosmology Mathematical and Computational Physics Mathematische Physik Spezielle Relativitätstheorie (DE-588)4182215-8 gnd rswk-swf 1\p (DE-588)4123623-3 Lehrbuch gnd-content Spezielle Relativitätstheorie (DE-588)4182215-8 s 2\p DE-604 https://doi.org/10.1007/978-3-540-46676-5 Verlag Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 2\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Woodhouse, Nicholas M. J. Special Relativity Physics Mathematical physics Relativity (Physics) Relativity and Cosmology Mathematical and Computational Physics Mathematische Physik Spezielle Relativitätstheorie (DE-588)4182215-8 gnd |
subject_GND | (DE-588)4182215-8 (DE-588)4123623-3 |
title | Special Relativity |
title_auth | Special Relativity |
title_exact_search | Special Relativity |
title_full | Special Relativity von Nicholas M. J. Woodhouse |
title_fullStr | Special Relativity von Nicholas M. J. Woodhouse |
title_full_unstemmed | Special Relativity von Nicholas M. J. Woodhouse |
title_short | Special Relativity |
title_sort | special relativity |
topic | Physics Mathematical physics Relativity (Physics) Relativity and Cosmology Mathematical and Computational Physics Mathematische Physik Spezielle Relativitätstheorie (DE-588)4182215-8 gnd |
topic_facet | Physics Mathematical physics Relativity (Physics) Relativity and Cosmology Mathematical and Computational Physics Mathematische Physik Spezielle Relativitätstheorie Lehrbuch |
url | https://doi.org/10.1007/978-3-540-46676-5 |
work_keys_str_mv | AT woodhousenicholasmj specialrelativity |