Vorlesungen über partielle Differentialgleichungen:
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | German |
Veröffentlicht: |
Berlin, Heidelberg
Springer Berlin Heidelberg
2004
|
Schriftenreihe: | Springer-Lehrbuch
|
Schlagworte: | |
Online-Zugang: | Volltext |
Beschreibung: | Nach seinem bekannten und viel verwendeten Buch über gewöhnliche Differentialgleichungen widmet sich der berühmte Mathematiker Vladimir Arnold nun den partiellen Differentialgleichungen in einem neuen Lehrbuch. In seiner unnachahmlich eleganten Art führt er über einen geometrischen, anschaulichen Weg in das Thema ein, und ermöglicht den Lesern so ein vertieftes Verständnis der Natur der partiellen Differentialgleichungen. Für Studierende der Mathematik und Physik ist dieses Buch ein Muss. Wie alle Bücher Vladimir Arnolds ist dieses Buch voller geometrischer Erkenntnisse. Arnold illustriert jeden Grundsatz mit einer Abbildung. Das Buch behandelt die elementarsten Teile des Fachgebiets and beschränkt sich hauptsächlich auf das Cauchy-Problem und das Neumann-Problems für die klassischen Lineargleichungen der mathematischen Physik, insbesondere auf die Laplace-Gleichung und die Wellengleichung, wobei die Wärmeleitungsgleichung und die Korteweg-de-Vries-Gleichung aber ebenfalls diskutiert werden. Die physikalische Intuition wird besonders hervorgehoben. Eine große Anzahl von Problemen ist übers ganze Buch verteilt, und ein ganzer Satz von Aufgaben findet sich am Ende. Was dieses Buch so einzigartig macht, ist das besondere Talent Arnolds, ein Thema aus einer neuen, frischen Perspektive zu beleuchten. Er lüftet gerne den Schleier der Verallgemeinerung, der so viele mathematische Texte umgibt, und enthüllt die im wesentlichen einfachen, intuitiven Ideen, die dem Thema zugrunde liegen. Das kann er besser als jeder andere mathematische Autor |
Beschreibung: | 1 Online-Ressource (IX, 174 S.) |
ISBN: | 9783540350316 9783540435785 |
ISSN: | 0937-7433 |
DOI: | 10.1007/3-540-35031-4 |
Internformat
MARC
LEADER | 00000nmm a2200000zc 4500 | ||
---|---|---|---|
001 | BV042444922 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 150324s2004 |||| o||u| ||||||ger d | ||
020 | |a 9783540350316 |c Online |9 978-3-540-35031-6 | ||
020 | |a 9783540435785 |c Print |9 978-3-540-43578-5 | ||
024 | 7 | |a 10.1007/3-540-35031-4 |2 doi | |
035 | |a (OCoLC)836531529 | ||
035 | |a (DE-599)BVBBV042444922 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a ger | |
049 | |a DE-91 |a DE-634 |a DE-860 |a DE-92 |a DE-703 |a DE-706 |a DE-Aug4 |a DE-739 |a DE-19 |a DE-83 | ||
082 | 0 | |a 515.353 |2 23 | |
084 | |a NAT 000 |2 stub | ||
100 | 1 | |a Arnold, Vladimir I. |e Verfasser |4 aut | |
245 | 1 | 0 | |a Vorlesungen über partielle Differentialgleichungen |c von Vladimir I. Arnold |
264 | 1 | |a Berlin, Heidelberg |b Springer Berlin Heidelberg |c 2004 | |
300 | |a 1 Online-Ressource (IX, 174 S.) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a Springer-Lehrbuch |x 0937-7433 | |
500 | |a Nach seinem bekannten und viel verwendeten Buch über gewöhnliche Differentialgleichungen widmet sich der berühmte Mathematiker Vladimir Arnold nun den partiellen Differentialgleichungen in einem neuen Lehrbuch. In seiner unnachahmlich eleganten Art führt er über einen geometrischen, anschaulichen Weg in das Thema ein, und ermöglicht den Lesern so ein vertieftes Verständnis der Natur der partiellen Differentialgleichungen. Für Studierende der Mathematik und Physik ist dieses Buch ein Muss. Wie alle Bücher Vladimir Arnolds ist dieses Buch voller geometrischer Erkenntnisse. Arnold illustriert jeden Grundsatz mit einer Abbildung. Das Buch behandelt die elementarsten Teile des Fachgebiets and beschränkt sich hauptsächlich auf das Cauchy-Problem und das Neumann-Problems für die klassischen Lineargleichungen der mathematischen Physik, insbesondere auf die Laplace-Gleichung und die Wellengleichung, wobei die Wärmeleitungsgleichung und die Korteweg-de-Vries-Gleichung aber ebenfalls diskutiert werden. Die physikalische Intuition wird besonders hervorgehoben. Eine große Anzahl von Problemen ist übers ganze Buch verteilt, und ein ganzer Satz von Aufgaben findet sich am Ende. Was dieses Buch so einzigartig macht, ist das besondere Talent Arnolds, ein Thema aus einer neuen, frischen Perspektive zu beleuchten. Er lüftet gerne den Schleier der Verallgemeinerung, der so viele mathematische Texte umgibt, und enthüllt die im wesentlichen einfachen, intuitiven Ideen, die dem Thema zugrunde liegen. Das kann er besser als jeder andere mathematische Autor | ||
650 | 4 | |a Mathematics | |
650 | 4 | |a Differential equations, partial | |
650 | 4 | |a Mathematical physics | |
650 | 4 | |a Partial Differential Equations | |
650 | 4 | |a Mathematical and Computational Physics | |
650 | 4 | |a Mathematik | |
650 | 4 | |a Mathematische Physik | |
650 | 0 | 7 | |a Partielle Differentialgleichung |0 (DE-588)4044779-0 |2 gnd |9 rswk-swf |
655 | 7 | |8 1\p |0 (DE-588)4123623-3 |a Lehrbuch |2 gnd-content | |
689 | 0 | 0 | |a Partielle Differentialgleichung |0 (DE-588)4044779-0 |D s |
689 | 0 | |8 2\p |5 DE-604 | |
856 | 4 | 0 | |u https://doi.org/10.1007/3-540-35031-4 |x Verlag |3 Volltext |
912 | |a ZDB-2-SNA |a ZDB-2-BAD | ||
940 | 1 | |q ZDB-2-SNA_Archive | |
940 | 1 | |q ZDB-2-SNA_2000/2004 | |
999 | |a oai:aleph.bib-bvb.de:BVB01-027880169 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 2\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk |
Datensatz im Suchindex
_version_ | 1804153140502593536 |
---|---|
any_adam_object | |
author | Arnold, Vladimir I. |
author_facet | Arnold, Vladimir I. |
author_role | aut |
author_sort | Arnold, Vladimir I. |
author_variant | v i a vi via |
building | Verbundindex |
bvnumber | BV042444922 |
classification_tum | NAT 000 |
collection | ZDB-2-SNA ZDB-2-BAD |
ctrlnum | (OCoLC)836531529 (DE-599)BVBBV042444922 |
dewey-full | 515.353 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 515 - Analysis |
dewey-raw | 515.353 |
dewey-search | 515.353 |
dewey-sort | 3515.353 |
dewey-tens | 510 - Mathematics |
discipline | Allgemeine Naturwissenschaft Mathematik |
doi_str_mv | 10.1007/3-540-35031-4 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03524nmm a2200529zc 4500</leader><controlfield tag="001">BV042444922</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">150324s2004 |||| o||u| ||||||ger d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783540350316</subfield><subfield code="c">Online</subfield><subfield code="9">978-3-540-35031-6</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783540435785</subfield><subfield code="c">Print</subfield><subfield code="9">978-3-540-43578-5</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/3-540-35031-4</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)836531529</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV042444922</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">ger</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-91</subfield><subfield code="a">DE-634</subfield><subfield code="a">DE-860</subfield><subfield code="a">DE-92</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-706</subfield><subfield code="a">DE-Aug4</subfield><subfield code="a">DE-739</subfield><subfield code="a">DE-19</subfield><subfield code="a">DE-83</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">515.353</subfield><subfield code="2">23</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">NAT 000</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Arnold, Vladimir I.</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Vorlesungen über partielle Differentialgleichungen</subfield><subfield code="c">von Vladimir I. Arnold</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Berlin, Heidelberg</subfield><subfield code="b">Springer Berlin Heidelberg</subfield><subfield code="c">2004</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (IX, 174 S.)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Springer-Lehrbuch</subfield><subfield code="x">0937-7433</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Nach seinem bekannten und viel verwendeten Buch über gewöhnliche Differentialgleichungen widmet sich der berühmte Mathematiker Vladimir Arnold nun den partiellen Differentialgleichungen in einem neuen Lehrbuch. In seiner unnachahmlich eleganten Art führt er über einen geometrischen, anschaulichen Weg in das Thema ein, und ermöglicht den Lesern so ein vertieftes Verständnis der Natur der partiellen Differentialgleichungen. Für Studierende der Mathematik und Physik ist dieses Buch ein Muss. Wie alle Bücher Vladimir Arnolds ist dieses Buch voller geometrischer Erkenntnisse. Arnold illustriert jeden Grundsatz mit einer Abbildung. Das Buch behandelt die elementarsten Teile des Fachgebiets and beschränkt sich hauptsächlich auf das Cauchy-Problem und das Neumann-Problems für die klassischen Lineargleichungen der mathematischen Physik, insbesondere auf die Laplace-Gleichung und die Wellengleichung, wobei die Wärmeleitungsgleichung und die Korteweg-de-Vries-Gleichung aber ebenfalls diskutiert werden. Die physikalische Intuition wird besonders hervorgehoben. Eine große Anzahl von Problemen ist übers ganze Buch verteilt, und ein ganzer Satz von Aufgaben findet sich am Ende. Was dieses Buch so einzigartig macht, ist das besondere Talent Arnolds, ein Thema aus einer neuen, frischen Perspektive zu beleuchten. Er lüftet gerne den Schleier der Verallgemeinerung, der so viele mathematische Texte umgibt, und enthüllt die im wesentlichen einfachen, intuitiven Ideen, die dem Thema zugrunde liegen. Das kann er besser als jeder andere mathematische Autor</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Differential equations, partial</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematical physics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Partial Differential Equations</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematical and Computational Physics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematik</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematische Physik</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Partielle Differentialgleichung</subfield><subfield code="0">(DE-588)4044779-0</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="655" ind1=" " ind2="7"><subfield code="8">1\p</subfield><subfield code="0">(DE-588)4123623-3</subfield><subfield code="a">Lehrbuch</subfield><subfield code="2">gnd-content</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Partielle Differentialgleichung</subfield><subfield code="0">(DE-588)4044779-0</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">2\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1007/3-540-35031-4</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-2-SNA</subfield><subfield code="a">ZDB-2-BAD</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">ZDB-2-SNA_Archive</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">ZDB-2-SNA_2000/2004</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-027880169</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield></record></collection> |
genre | 1\p (DE-588)4123623-3 Lehrbuch gnd-content |
genre_facet | Lehrbuch |
id | DE-604.BV042444922 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T01:21:52Z |
institution | BVB |
isbn | 9783540350316 9783540435785 |
issn | 0937-7433 |
language | German |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-027880169 |
oclc_num | 836531529 |
open_access_boolean | |
owner | DE-91 DE-BY-TUM DE-634 DE-860 DE-92 DE-703 DE-706 DE-Aug4 DE-739 DE-19 DE-BY-UBM DE-83 |
owner_facet | DE-91 DE-BY-TUM DE-634 DE-860 DE-92 DE-703 DE-706 DE-Aug4 DE-739 DE-19 DE-BY-UBM DE-83 |
physical | 1 Online-Ressource (IX, 174 S.) |
psigel | ZDB-2-SNA ZDB-2-BAD ZDB-2-SNA_Archive ZDB-2-SNA_2000/2004 |
publishDate | 2004 |
publishDateSearch | 2004 |
publishDateSort | 2004 |
publisher | Springer Berlin Heidelberg |
record_format | marc |
series2 | Springer-Lehrbuch |
spelling | Arnold, Vladimir I. Verfasser aut Vorlesungen über partielle Differentialgleichungen von Vladimir I. Arnold Berlin, Heidelberg Springer Berlin Heidelberg 2004 1 Online-Ressource (IX, 174 S.) txt rdacontent c rdamedia cr rdacarrier Springer-Lehrbuch 0937-7433 Nach seinem bekannten und viel verwendeten Buch über gewöhnliche Differentialgleichungen widmet sich der berühmte Mathematiker Vladimir Arnold nun den partiellen Differentialgleichungen in einem neuen Lehrbuch. In seiner unnachahmlich eleganten Art führt er über einen geometrischen, anschaulichen Weg in das Thema ein, und ermöglicht den Lesern so ein vertieftes Verständnis der Natur der partiellen Differentialgleichungen. Für Studierende der Mathematik und Physik ist dieses Buch ein Muss. Wie alle Bücher Vladimir Arnolds ist dieses Buch voller geometrischer Erkenntnisse. Arnold illustriert jeden Grundsatz mit einer Abbildung. Das Buch behandelt die elementarsten Teile des Fachgebiets and beschränkt sich hauptsächlich auf das Cauchy-Problem und das Neumann-Problems für die klassischen Lineargleichungen der mathematischen Physik, insbesondere auf die Laplace-Gleichung und die Wellengleichung, wobei die Wärmeleitungsgleichung und die Korteweg-de-Vries-Gleichung aber ebenfalls diskutiert werden. Die physikalische Intuition wird besonders hervorgehoben. Eine große Anzahl von Problemen ist übers ganze Buch verteilt, und ein ganzer Satz von Aufgaben findet sich am Ende. Was dieses Buch so einzigartig macht, ist das besondere Talent Arnolds, ein Thema aus einer neuen, frischen Perspektive zu beleuchten. Er lüftet gerne den Schleier der Verallgemeinerung, der so viele mathematische Texte umgibt, und enthüllt die im wesentlichen einfachen, intuitiven Ideen, die dem Thema zugrunde liegen. Das kann er besser als jeder andere mathematische Autor Mathematics Differential equations, partial Mathematical physics Partial Differential Equations Mathematical and Computational Physics Mathematik Mathematische Physik Partielle Differentialgleichung (DE-588)4044779-0 gnd rswk-swf 1\p (DE-588)4123623-3 Lehrbuch gnd-content Partielle Differentialgleichung (DE-588)4044779-0 s 2\p DE-604 https://doi.org/10.1007/3-540-35031-4 Verlag Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 2\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Arnold, Vladimir I. Vorlesungen über partielle Differentialgleichungen Mathematics Differential equations, partial Mathematical physics Partial Differential Equations Mathematical and Computational Physics Mathematik Mathematische Physik Partielle Differentialgleichung (DE-588)4044779-0 gnd |
subject_GND | (DE-588)4044779-0 (DE-588)4123623-3 |
title | Vorlesungen über partielle Differentialgleichungen |
title_auth | Vorlesungen über partielle Differentialgleichungen |
title_exact_search | Vorlesungen über partielle Differentialgleichungen |
title_full | Vorlesungen über partielle Differentialgleichungen von Vladimir I. Arnold |
title_fullStr | Vorlesungen über partielle Differentialgleichungen von Vladimir I. Arnold |
title_full_unstemmed | Vorlesungen über partielle Differentialgleichungen von Vladimir I. Arnold |
title_short | Vorlesungen über partielle Differentialgleichungen |
title_sort | vorlesungen uber partielle differentialgleichungen |
topic | Mathematics Differential equations, partial Mathematical physics Partial Differential Equations Mathematical and Computational Physics Mathematik Mathematische Physik Partielle Differentialgleichung (DE-588)4044779-0 gnd |
topic_facet | Mathematics Differential equations, partial Mathematical physics Partial Differential Equations Mathematical and Computational Physics Mathematik Mathematische Physik Partielle Differentialgleichung Lehrbuch |
url | https://doi.org/10.1007/3-540-35031-4 |
work_keys_str_mv | AT arnoldvladimiri vorlesungenuberpartielledifferentialgleichungen |