Analytische Geometrie:
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | German |
Veröffentlicht: |
Wiesbaden
Vieweg+Teubner Verlag
1983
|
Ausgabe: | 3. neu bearbeitete Auflage |
Schriftenreihe: | vieweg studium; Grundkurs Mathematik
|
Schlagworte: | |
Online-Zugang: | Volltext |
Beschreibung: | Zusammen mit dem Band über Lineare Algebra kann dieses Buch als Begleittext zu einer der üblichen zweisemestrigen Anfängervor1esungen über "Lineare Algebra und Analytische Geometrie" dienen. Die Trennung in zwei Bände eröffnet dem Leser mannigfache Möglichkeiten, nach eigenem Geschmack das Studium der linearen Algebra durch geometrische Exkurse aufzulockern. Dabei wird man sich aus Zeit gründen auf eine Auswahl aus der analytischen Geometrie beschränken müssen. Um dies zu erleichtern, sind die drei Kapitel weitgehend unabhängig voneinander ge halten. Das zweite Kapitel ist ganz unabhängig, es benötigt keine Hilfsmittel aus den beiden anderen. Die Zusammenhänge zwischen affmer und projektiver Geometrie zu unter driicken, wäre jedoch widersinnig gewesen. An zwei schwierigen Stellen in der affinen Geometrie setzen wir Ergebnisse der projektiven Geometrie ein: Beim Beweis des Hauptsatzes über Kollineationen (1.3.4) und bei der Klassifikation von Quadriken (1.4.5 bis 1.4.8). Die restlichen Abschnitte der affinen Geometrie hängen jedoch davon nicht ab. Schließlich sollte man als Motivation für die projektive Geometrie ein klein wenig affine Geometrie kennengelernt haben. Ob man sich mit der Einführung allgemeiner affiner Räume abgeben will oder nicht, ist eine Frage des Geschmacks. Vom handwerklichen Standpunkt kann man sich damit begnügen, Geometrie in einem Vektorraum zu betreiben. Einer der Gründe, warum der allgemeine Begriff hier doch ausführlich dargestellt wurde, war der, einen zukünftigen Lehrer für den Fall zu wappnen, daß er diesen Dingen einmal in Schul büchern begegnet |
Beschreibung: | 1 Online-Ressource (VIII, 213 S.) |
ISBN: | 9783322964175 9783528272357 |
DOI: | 10.1007/978-3-322-96417-5 |
Internformat
MARC
LEADER | 00000nmm a2200000zc 4500 | ||
---|---|---|---|
001 | BV042444716 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 150324s1983 |||| o||u| ||||||ger d | ||
020 | |a 9783322964175 |c Online |9 978-3-322-96417-5 | ||
020 | |a 9783528272357 |c Print |9 978-3-528-27235-7 | ||
024 | 7 | |a 10.1007/978-3-322-96417-5 |2 doi | |
035 | |a (OCoLC)864028637 | ||
035 | |a (DE-599)BVBBV042444716 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a ger | |
049 | |a DE-91 |a DE-634 |a DE-92 |a DE-706 | ||
082 | 0 | |a 510 |2 23 | |
084 | |a NAT 000 |2 stub | ||
100 | 1 | |a Fischer, Gerd |e Verfasser |4 aut | |
245 | 1 | 0 | |a Analytische Geometrie |c von Gerd Fischer |
250 | |a 3. neu bearbeitete Auflage | ||
264 | 1 | |a Wiesbaden |b Vieweg+Teubner Verlag |c 1983 | |
300 | |a 1 Online-Ressource (VIII, 213 S.) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a vieweg studium; Grundkurs Mathematik | |
500 | |a Zusammen mit dem Band über Lineare Algebra kann dieses Buch als Begleittext zu einer der üblichen zweisemestrigen Anfängervor1esungen über "Lineare Algebra und Analytische Geometrie" dienen. Die Trennung in zwei Bände eröffnet dem Leser mannigfache Möglichkeiten, nach eigenem Geschmack das Studium der linearen Algebra durch geometrische Exkurse aufzulockern. Dabei wird man sich aus Zeit gründen auf eine Auswahl aus der analytischen Geometrie beschränken müssen. Um dies zu erleichtern, sind die drei Kapitel weitgehend unabhängig voneinander ge halten. Das zweite Kapitel ist ganz unabhängig, es benötigt keine Hilfsmittel aus den beiden anderen. Die Zusammenhänge zwischen affmer und projektiver Geometrie zu unter driicken, wäre jedoch widersinnig gewesen. An zwei schwierigen Stellen in der affinen Geometrie setzen wir Ergebnisse der projektiven Geometrie ein: Beim Beweis des Hauptsatzes über Kollineationen (1.3.4) und bei der Klassifikation von Quadriken (1.4.5 bis 1.4.8). Die restlichen Abschnitte der affinen Geometrie hängen jedoch davon nicht ab. Schließlich sollte man als Motivation für die projektive Geometrie ein klein wenig affine Geometrie kennengelernt haben. Ob man sich mit der Einführung allgemeiner affiner Räume abgeben will oder nicht, ist eine Frage des Geschmacks. Vom handwerklichen Standpunkt kann man sich damit begnügen, Geometrie in einem Vektorraum zu betreiben. Einer der Gründe, warum der allgemeine Begriff hier doch ausführlich dargestellt wurde, war der, einen zukünftigen Lehrer für den Fall zu wappnen, daß er diesen Dingen einmal in Schul büchern begegnet | ||
650 | 4 | |a Mathematics | |
650 | 4 | |a Mathematics, general | |
650 | 4 | |a Mathematik | |
650 | 0 | 7 | |a Analytische Geometrie |0 (DE-588)4001867-2 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Lineare Algebra |0 (DE-588)4035811-2 |2 gnd |9 rswk-swf |
655 | 7 | |8 1\p |0 (DE-588)4006432-3 |a Bibliografie |2 gnd-content | |
655 | 7 | |8 2\p |0 (DE-588)4123623-3 |a Lehrbuch |2 gnd-content | |
689 | 0 | 0 | |a Analytische Geometrie |0 (DE-588)4001867-2 |D s |
689 | 0 | |8 3\p |5 DE-604 | |
689 | 1 | 0 | |a Lineare Algebra |0 (DE-588)4035811-2 |D s |
689 | 1 | |8 4\p |5 DE-604 | |
856 | 4 | 0 | |u https://doi.org/10.1007/978-3-322-96417-5 |x Verlag |3 Volltext |
912 | |a ZDB-2-SNA |a ZDB-2-BAD | ||
940 | 1 | |q ZDB-2-SNA_Archive | |
999 | |a oai:aleph.bib-bvb.de:BVB01-027879963 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 2\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 3\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 4\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk |
Datensatz im Suchindex
_version_ | 1804153140061143040 |
---|---|
any_adam_object | |
author | Fischer, Gerd |
author_facet | Fischer, Gerd |
author_role | aut |
author_sort | Fischer, Gerd |
author_variant | g f gf |
building | Verbundindex |
bvnumber | BV042444716 |
classification_tum | NAT 000 |
collection | ZDB-2-SNA ZDB-2-BAD |
ctrlnum | (OCoLC)864028637 (DE-599)BVBBV042444716 |
dewey-full | 510 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 510 - Mathematics |
dewey-raw | 510 |
dewey-search | 510 |
dewey-sort | 3510 |
dewey-tens | 510 - Mathematics |
discipline | Allgemeine Naturwissenschaft Mathematik |
doi_str_mv | 10.1007/978-3-322-96417-5 |
edition | 3. neu bearbeitete Auflage |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03683nmm a2200553zc 4500</leader><controlfield tag="001">BV042444716</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">150324s1983 |||| o||u| ||||||ger d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783322964175</subfield><subfield code="c">Online</subfield><subfield code="9">978-3-322-96417-5</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783528272357</subfield><subfield code="c">Print</subfield><subfield code="9">978-3-528-27235-7</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/978-3-322-96417-5</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)864028637</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV042444716</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">ger</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-91</subfield><subfield code="a">DE-634</subfield><subfield code="a">DE-92</subfield><subfield code="a">DE-706</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">510</subfield><subfield code="2">23</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">NAT 000</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Fischer, Gerd</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Analytische Geometrie</subfield><subfield code="c">von Gerd Fischer</subfield></datafield><datafield tag="250" ind1=" " ind2=" "><subfield code="a">3. neu bearbeitete Auflage</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Wiesbaden</subfield><subfield code="b">Vieweg+Teubner Verlag</subfield><subfield code="c">1983</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (VIII, 213 S.)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">vieweg studium; Grundkurs Mathematik</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Zusammen mit dem Band über Lineare Algebra kann dieses Buch als Begleittext zu einer der üblichen zweisemestrigen Anfängervor1esungen über "Lineare Algebra und Analytische Geometrie" dienen. Die Trennung in zwei Bände eröffnet dem Leser mannigfache Möglichkeiten, nach eigenem Geschmack das Studium der linearen Algebra durch geometrische Exkurse aufzulockern. Dabei wird man sich aus Zeit gründen auf eine Auswahl aus der analytischen Geometrie beschränken müssen. Um dies zu erleichtern, sind die drei Kapitel weitgehend unabhängig voneinander ge halten. Das zweite Kapitel ist ganz unabhängig, es benötigt keine Hilfsmittel aus den beiden anderen. Die Zusammenhänge zwischen affmer und projektiver Geometrie zu unter driicken, wäre jedoch widersinnig gewesen. An zwei schwierigen Stellen in der affinen Geometrie setzen wir Ergebnisse der projektiven Geometrie ein: Beim Beweis des Hauptsatzes über Kollineationen (1.3.4) und bei der Klassifikation von Quadriken (1.4.5 bis 1.4.8). Die restlichen Abschnitte der affinen Geometrie hängen jedoch davon nicht ab. Schließlich sollte man als Motivation für die projektive Geometrie ein klein wenig affine Geometrie kennengelernt haben. Ob man sich mit der Einführung allgemeiner affiner Räume abgeben will oder nicht, ist eine Frage des Geschmacks. Vom handwerklichen Standpunkt kann man sich damit begnügen, Geometrie in einem Vektorraum zu betreiben. Einer der Gründe, warum der allgemeine Begriff hier doch ausführlich dargestellt wurde, war der, einen zukünftigen Lehrer für den Fall zu wappnen, daß er diesen Dingen einmal in Schul büchern begegnet</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematics, general</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematik</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Analytische Geometrie</subfield><subfield code="0">(DE-588)4001867-2</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Lineare Algebra</subfield><subfield code="0">(DE-588)4035811-2</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="655" ind1=" " ind2="7"><subfield code="8">1\p</subfield><subfield code="0">(DE-588)4006432-3</subfield><subfield code="a">Bibliografie</subfield><subfield code="2">gnd-content</subfield></datafield><datafield tag="655" ind1=" " ind2="7"><subfield code="8">2\p</subfield><subfield code="0">(DE-588)4123623-3</subfield><subfield code="a">Lehrbuch</subfield><subfield code="2">gnd-content</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Analytische Geometrie</subfield><subfield code="0">(DE-588)4001867-2</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">3\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Lineare Algebra</subfield><subfield code="0">(DE-588)4035811-2</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="8">4\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1007/978-3-322-96417-5</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-2-SNA</subfield><subfield code="a">ZDB-2-BAD</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">ZDB-2-SNA_Archive</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-027879963</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">3\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">4\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield></record></collection> |
genre | 1\p (DE-588)4006432-3 Bibliografie gnd-content 2\p (DE-588)4123623-3 Lehrbuch gnd-content |
genre_facet | Bibliografie Lehrbuch |
id | DE-604.BV042444716 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T01:21:52Z |
institution | BVB |
isbn | 9783322964175 9783528272357 |
language | German |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-027879963 |
oclc_num | 864028637 |
open_access_boolean | |
owner | DE-91 DE-BY-TUM DE-634 DE-92 DE-706 |
owner_facet | DE-91 DE-BY-TUM DE-634 DE-92 DE-706 |
physical | 1 Online-Ressource (VIII, 213 S.) |
psigel | ZDB-2-SNA ZDB-2-BAD ZDB-2-SNA_Archive |
publishDate | 1983 |
publishDateSearch | 1983 |
publishDateSort | 1983 |
publisher | Vieweg+Teubner Verlag |
record_format | marc |
series2 | vieweg studium; Grundkurs Mathematik |
spelling | Fischer, Gerd Verfasser aut Analytische Geometrie von Gerd Fischer 3. neu bearbeitete Auflage Wiesbaden Vieweg+Teubner Verlag 1983 1 Online-Ressource (VIII, 213 S.) txt rdacontent c rdamedia cr rdacarrier vieweg studium; Grundkurs Mathematik Zusammen mit dem Band über Lineare Algebra kann dieses Buch als Begleittext zu einer der üblichen zweisemestrigen Anfängervor1esungen über "Lineare Algebra und Analytische Geometrie" dienen. Die Trennung in zwei Bände eröffnet dem Leser mannigfache Möglichkeiten, nach eigenem Geschmack das Studium der linearen Algebra durch geometrische Exkurse aufzulockern. Dabei wird man sich aus Zeit gründen auf eine Auswahl aus der analytischen Geometrie beschränken müssen. Um dies zu erleichtern, sind die drei Kapitel weitgehend unabhängig voneinander ge halten. Das zweite Kapitel ist ganz unabhängig, es benötigt keine Hilfsmittel aus den beiden anderen. Die Zusammenhänge zwischen affmer und projektiver Geometrie zu unter driicken, wäre jedoch widersinnig gewesen. An zwei schwierigen Stellen in der affinen Geometrie setzen wir Ergebnisse der projektiven Geometrie ein: Beim Beweis des Hauptsatzes über Kollineationen (1.3.4) und bei der Klassifikation von Quadriken (1.4.5 bis 1.4.8). Die restlichen Abschnitte der affinen Geometrie hängen jedoch davon nicht ab. Schließlich sollte man als Motivation für die projektive Geometrie ein klein wenig affine Geometrie kennengelernt haben. Ob man sich mit der Einführung allgemeiner affiner Räume abgeben will oder nicht, ist eine Frage des Geschmacks. Vom handwerklichen Standpunkt kann man sich damit begnügen, Geometrie in einem Vektorraum zu betreiben. Einer der Gründe, warum der allgemeine Begriff hier doch ausführlich dargestellt wurde, war der, einen zukünftigen Lehrer für den Fall zu wappnen, daß er diesen Dingen einmal in Schul büchern begegnet Mathematics Mathematics, general Mathematik Analytische Geometrie (DE-588)4001867-2 gnd rswk-swf Lineare Algebra (DE-588)4035811-2 gnd rswk-swf 1\p (DE-588)4006432-3 Bibliografie gnd-content 2\p (DE-588)4123623-3 Lehrbuch gnd-content Analytische Geometrie (DE-588)4001867-2 s 3\p DE-604 Lineare Algebra (DE-588)4035811-2 s 4\p DE-604 https://doi.org/10.1007/978-3-322-96417-5 Verlag Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 2\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 3\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 4\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Fischer, Gerd Analytische Geometrie Mathematics Mathematics, general Mathematik Analytische Geometrie (DE-588)4001867-2 gnd Lineare Algebra (DE-588)4035811-2 gnd |
subject_GND | (DE-588)4001867-2 (DE-588)4035811-2 (DE-588)4006432-3 (DE-588)4123623-3 |
title | Analytische Geometrie |
title_auth | Analytische Geometrie |
title_exact_search | Analytische Geometrie |
title_full | Analytische Geometrie von Gerd Fischer |
title_fullStr | Analytische Geometrie von Gerd Fischer |
title_full_unstemmed | Analytische Geometrie von Gerd Fischer |
title_short | Analytische Geometrie |
title_sort | analytische geometrie |
topic | Mathematics Mathematics, general Mathematik Analytische Geometrie (DE-588)4001867-2 gnd Lineare Algebra (DE-588)4035811-2 gnd |
topic_facet | Mathematics Mathematics, general Mathematik Analytische Geometrie Lineare Algebra Bibliografie Lehrbuch |
url | https://doi.org/10.1007/978-3-322-96417-5 |
work_keys_str_mv | AT fischergerd analytischegeometrie |