Vektoranalysis:
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | German |
Veröffentlicht: |
Wiesbaden
Vieweg+Teubner Verlag
1988
|
Ausgabe: | 2., überarbeitete und erweiterte Auflage |
Schriftenreihe: | Teubner Studienbücher, Physik/Chemie
|
Schlagworte: | |
Online-Zugang: | Volltext |
Beschreibung: | Bücher über Vektoranalysis beginnen üblicherweise mit der Definition eines Vektors als Äquivalenzklasse gerichteter Strecken - oder weniger genau, als Größe, die sowohl eine Richtung als auch eine Länge hat. Diese Einführung ist wegen ihres einfach erscheinenden Konzeptes einprägsam, aber sie führt zu logischen Schwierigkeiten, die nur durch sorgfältiges Vorgehen gelöst werden können. Folgerichtig haben Studenten oft Probleme, die Anfänge der Vektoranalysis vollständig zu verstehen und verlieren schnell an Vertrauen. Eine andere Unzulänglichkeit ist es, daß bei der weiteren Entwicklung häufig auf die geometrische Anschauung zurückgegriffen wird und viel Sorgfalt nötig ist, um analytische Zusammenhänge nicht zu verwischen oder zu übersehen. So wird z. B. selten klar, daß bei der Definition des Gradienten eines Skalarfeldes, der Divergenz oder der Rotation eines Vektorfeldes vorausgesetzt werden muß, daß die Felder stetig differenzierbar sind und daß die bloße Existenz der partiellen Ableitungen erster Ordnung unzureichend ist. Der Einstieg in die Vektoranalysis, der in diesem Band gewählt wurde, basiert auf der Definition eines Vektors mit Hilfe rechtwinkliger kartesischer Komponenten, die bei einer Änderung der Achsen vorgegebene Transformationsgesetze erfüllen. Dieser Einstieg wurde seit 10 Jahren erfolgreich in Anfängervorlesungen für Mathematiker und andere Naturwissenschaftler benutzt und bietet einige Vorteile. Regeln zur Addition und Subtraktion von Vektoren, zur Berechnung des Skalar- und Vektor produktes und zum Differenzieren sind schnell greifbar und die Möglichkeit, Vektoren so einfach zu handhaben, gibt den Studenten unmittelbares Zutrauen. Der spätere Einstieg in die Theorie der Vektorfelder erscheint natürlich, da Gradient, Divergenz und Rotation in ihrer Koordinatenform definiert sind |
Beschreibung: | 1 Online-Ressource (260S.) |
ISBN: | 9783322940568 9783519120445 |
ISSN: | 1615-3405 |
DOI: | 10.1007/978-3-322-94056-8 |
Internformat
MARC
LEADER | 00000nmm a2200000zc 4500 | ||
---|---|---|---|
001 | BV042444571 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 150324s1988 |||| o||u| ||||||ger d | ||
020 | |a 9783322940568 |c Online |9 978-3-322-94056-8 | ||
020 | |a 9783519120445 |c Print |9 978-3-519-12044-5 | ||
024 | 7 | |a 10.1007/978-3-322-94056-8 |2 doi | |
035 | |a (OCoLC)864073949 | ||
035 | |a (DE-599)BVBBV042444571 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a ger | |
049 | |a DE-91 |a DE-634 |a DE-92 |a DE-706 | ||
082 | 0 | |a 620 |2 23 | |
084 | |a NAT 000 |2 stub | ||
100 | 1 | |a Bourne, Donald E. |e Verfasser |4 aut | |
245 | 1 | 0 | |a Vektoranalysis |c von Donald E. Bourne, Peter C. Kendall |
250 | |a 2., überarbeitete und erweiterte Auflage | ||
264 | 1 | |a Wiesbaden |b Vieweg+Teubner Verlag |c 1988 | |
300 | |a 1 Online-Ressource (260S.) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a Teubner Studienbücher, Physik/Chemie |x 1615-3405 | |
500 | |a Bücher über Vektoranalysis beginnen üblicherweise mit der Definition eines Vektors als Äquivalenzklasse gerichteter Strecken - oder weniger genau, als Größe, die sowohl eine Richtung als auch eine Länge hat. Diese Einführung ist wegen ihres einfach erscheinenden Konzeptes einprägsam, aber sie führt zu logischen Schwierigkeiten, die nur durch sorgfältiges Vorgehen gelöst werden können. Folgerichtig haben Studenten oft Probleme, die Anfänge der Vektoranalysis vollständig zu verstehen und verlieren schnell an Vertrauen. Eine andere Unzulänglichkeit ist es, daß bei der weiteren Entwicklung häufig auf die geometrische Anschauung zurückgegriffen wird und viel Sorgfalt nötig ist, um analytische Zusammenhänge nicht zu verwischen oder zu übersehen. So wird z. B. selten klar, daß bei der Definition des Gradienten eines Skalarfeldes, der Divergenz oder der Rotation eines Vektorfeldes vorausgesetzt werden muß, daß die Felder stetig differenzierbar sind und daß die bloße Existenz der partiellen Ableitungen erster Ordnung unzureichend ist. Der Einstieg in die Vektoranalysis, der in diesem Band gewählt wurde, basiert auf der Definition eines Vektors mit Hilfe rechtwinkliger kartesischer Komponenten, die bei einer Änderung der Achsen vorgegebene Transformationsgesetze erfüllen. Dieser Einstieg wurde seit 10 Jahren erfolgreich in Anfängervorlesungen für Mathematiker und andere Naturwissenschaftler benutzt und bietet einige Vorteile. Regeln zur Addition und Subtraktion von Vektoren, zur Berechnung des Skalar- und Vektor produktes und zum Differenzieren sind schnell greifbar und die Möglichkeit, Vektoren so einfach zu handhaben, gibt den Studenten unmittelbares Zutrauen. Der spätere Einstieg in die Theorie der Vektorfelder erscheint natürlich, da Gradient, Divergenz und Rotation in ihrer Koordinatenform definiert sind | ||
650 | 4 | |a Engineering | |
650 | 4 | |a Engineering, general | |
650 | 4 | |a Ingenieurwissenschaften | |
650 | 0 | 7 | |a Tensoranalysis |0 (DE-588)4204323-2 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Vektoranalysis |0 (DE-588)4191992-0 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Vektoranalysis |0 (DE-588)4191992-0 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
689 | 1 | 0 | |a Tensoranalysis |0 (DE-588)4204323-2 |D s |
689 | 1 | |8 2\p |5 DE-604 | |
700 | 1 | |a Kendall, Peter C. |e Sonstige |4 oth | |
856 | 4 | 0 | |u https://doi.org/10.1007/978-3-322-94056-8 |x Verlag |3 Volltext |
912 | |a ZDB-2-SNA |a ZDB-2-BAD | ||
940 | 1 | |q ZDB-2-SNA_Archive | |
999 | |a oai:aleph.bib-bvb.de:BVB01-027879817 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 2\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk |
Datensatz im Suchindex
_version_ | 1804153139764396032 |
---|---|
any_adam_object | |
author | Bourne, Donald E. |
author_facet | Bourne, Donald E. |
author_role | aut |
author_sort | Bourne, Donald E. |
author_variant | d e b de deb |
building | Verbundindex |
bvnumber | BV042444571 |
classification_tum | NAT 000 |
collection | ZDB-2-SNA ZDB-2-BAD |
ctrlnum | (OCoLC)864073949 (DE-599)BVBBV042444571 |
dewey-full | 620 |
dewey-hundreds | 600 - Technology (Applied sciences) |
dewey-ones | 620 - Engineering and allied operations |
dewey-raw | 620 |
dewey-search | 620 |
dewey-sort | 3620 |
dewey-tens | 620 - Engineering and allied operations |
discipline | Allgemeine Naturwissenschaft |
doi_str_mv | 10.1007/978-3-322-94056-8 |
edition | 2., überarbeitete und erweiterte Auflage |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03698nmm a2200517zc 4500</leader><controlfield tag="001">BV042444571</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">150324s1988 |||| o||u| ||||||ger d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783322940568</subfield><subfield code="c">Online</subfield><subfield code="9">978-3-322-94056-8</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783519120445</subfield><subfield code="c">Print</subfield><subfield code="9">978-3-519-12044-5</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/978-3-322-94056-8</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)864073949</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV042444571</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">ger</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-91</subfield><subfield code="a">DE-634</subfield><subfield code="a">DE-92</subfield><subfield code="a">DE-706</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">620</subfield><subfield code="2">23</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">NAT 000</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Bourne, Donald E.</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Vektoranalysis</subfield><subfield code="c">von Donald E. Bourne, Peter C. Kendall</subfield></datafield><datafield tag="250" ind1=" " ind2=" "><subfield code="a">2., überarbeitete und erweiterte Auflage</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Wiesbaden</subfield><subfield code="b">Vieweg+Teubner Verlag</subfield><subfield code="c">1988</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (260S.)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Teubner Studienbücher, Physik/Chemie</subfield><subfield code="x">1615-3405</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Bücher über Vektoranalysis beginnen üblicherweise mit der Definition eines Vektors als Äquivalenzklasse gerichteter Strecken - oder weniger genau, als Größe, die sowohl eine Richtung als auch eine Länge hat. Diese Einführung ist wegen ihres einfach erscheinenden Konzeptes einprägsam, aber sie führt zu logischen Schwierigkeiten, die nur durch sorgfältiges Vorgehen gelöst werden können. Folgerichtig haben Studenten oft Probleme, die Anfänge der Vektoranalysis vollständig zu verstehen und verlieren schnell an Vertrauen. Eine andere Unzulänglichkeit ist es, daß bei der weiteren Entwicklung häufig auf die geometrische Anschauung zurückgegriffen wird und viel Sorgfalt nötig ist, um analytische Zusammenhänge nicht zu verwischen oder zu übersehen. So wird z. B. selten klar, daß bei der Definition des Gradienten eines Skalarfeldes, der Divergenz oder der Rotation eines Vektorfeldes vorausgesetzt werden muß, daß die Felder stetig differenzierbar sind und daß die bloße Existenz der partiellen Ableitungen erster Ordnung unzureichend ist. Der Einstieg in die Vektoranalysis, der in diesem Band gewählt wurde, basiert auf der Definition eines Vektors mit Hilfe rechtwinkliger kartesischer Komponenten, die bei einer Änderung der Achsen vorgegebene Transformationsgesetze erfüllen. Dieser Einstieg wurde seit 10 Jahren erfolgreich in Anfängervorlesungen für Mathematiker und andere Naturwissenschaftler benutzt und bietet einige Vorteile. Regeln zur Addition und Subtraktion von Vektoren, zur Berechnung des Skalar- und Vektor produktes und zum Differenzieren sind schnell greifbar und die Möglichkeit, Vektoren so einfach zu handhaben, gibt den Studenten unmittelbares Zutrauen. Der spätere Einstieg in die Theorie der Vektorfelder erscheint natürlich, da Gradient, Divergenz und Rotation in ihrer Koordinatenform definiert sind</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Engineering</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Engineering, general</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Ingenieurwissenschaften</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Tensoranalysis</subfield><subfield code="0">(DE-588)4204323-2</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Vektoranalysis</subfield><subfield code="0">(DE-588)4191992-0</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Vektoranalysis</subfield><subfield code="0">(DE-588)4191992-0</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Tensoranalysis</subfield><subfield code="0">(DE-588)4204323-2</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Kendall, Peter C.</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1007/978-3-322-94056-8</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-2-SNA</subfield><subfield code="a">ZDB-2-BAD</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">ZDB-2-SNA_Archive</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-027879817</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield></record></collection> |
id | DE-604.BV042444571 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T01:21:52Z |
institution | BVB |
isbn | 9783322940568 9783519120445 |
issn | 1615-3405 |
language | German |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-027879817 |
oclc_num | 864073949 |
open_access_boolean | |
owner | DE-91 DE-BY-TUM DE-634 DE-92 DE-706 |
owner_facet | DE-91 DE-BY-TUM DE-634 DE-92 DE-706 |
physical | 1 Online-Ressource (260S.) |
psigel | ZDB-2-SNA ZDB-2-BAD ZDB-2-SNA_Archive |
publishDate | 1988 |
publishDateSearch | 1988 |
publishDateSort | 1988 |
publisher | Vieweg+Teubner Verlag |
record_format | marc |
series2 | Teubner Studienbücher, Physik/Chemie |
spelling | Bourne, Donald E. Verfasser aut Vektoranalysis von Donald E. Bourne, Peter C. Kendall 2., überarbeitete und erweiterte Auflage Wiesbaden Vieweg+Teubner Verlag 1988 1 Online-Ressource (260S.) txt rdacontent c rdamedia cr rdacarrier Teubner Studienbücher, Physik/Chemie 1615-3405 Bücher über Vektoranalysis beginnen üblicherweise mit der Definition eines Vektors als Äquivalenzklasse gerichteter Strecken - oder weniger genau, als Größe, die sowohl eine Richtung als auch eine Länge hat. Diese Einführung ist wegen ihres einfach erscheinenden Konzeptes einprägsam, aber sie führt zu logischen Schwierigkeiten, die nur durch sorgfältiges Vorgehen gelöst werden können. Folgerichtig haben Studenten oft Probleme, die Anfänge der Vektoranalysis vollständig zu verstehen und verlieren schnell an Vertrauen. Eine andere Unzulänglichkeit ist es, daß bei der weiteren Entwicklung häufig auf die geometrische Anschauung zurückgegriffen wird und viel Sorgfalt nötig ist, um analytische Zusammenhänge nicht zu verwischen oder zu übersehen. So wird z. B. selten klar, daß bei der Definition des Gradienten eines Skalarfeldes, der Divergenz oder der Rotation eines Vektorfeldes vorausgesetzt werden muß, daß die Felder stetig differenzierbar sind und daß die bloße Existenz der partiellen Ableitungen erster Ordnung unzureichend ist. Der Einstieg in die Vektoranalysis, der in diesem Band gewählt wurde, basiert auf der Definition eines Vektors mit Hilfe rechtwinkliger kartesischer Komponenten, die bei einer Änderung der Achsen vorgegebene Transformationsgesetze erfüllen. Dieser Einstieg wurde seit 10 Jahren erfolgreich in Anfängervorlesungen für Mathematiker und andere Naturwissenschaftler benutzt und bietet einige Vorteile. Regeln zur Addition und Subtraktion von Vektoren, zur Berechnung des Skalar- und Vektor produktes und zum Differenzieren sind schnell greifbar und die Möglichkeit, Vektoren so einfach zu handhaben, gibt den Studenten unmittelbares Zutrauen. Der spätere Einstieg in die Theorie der Vektorfelder erscheint natürlich, da Gradient, Divergenz und Rotation in ihrer Koordinatenform definiert sind Engineering Engineering, general Ingenieurwissenschaften Tensoranalysis (DE-588)4204323-2 gnd rswk-swf Vektoranalysis (DE-588)4191992-0 gnd rswk-swf Vektoranalysis (DE-588)4191992-0 s 1\p DE-604 Tensoranalysis (DE-588)4204323-2 s 2\p DE-604 Kendall, Peter C. Sonstige oth https://doi.org/10.1007/978-3-322-94056-8 Verlag Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 2\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Bourne, Donald E. Vektoranalysis Engineering Engineering, general Ingenieurwissenschaften Tensoranalysis (DE-588)4204323-2 gnd Vektoranalysis (DE-588)4191992-0 gnd |
subject_GND | (DE-588)4204323-2 (DE-588)4191992-0 |
title | Vektoranalysis |
title_auth | Vektoranalysis |
title_exact_search | Vektoranalysis |
title_full | Vektoranalysis von Donald E. Bourne, Peter C. Kendall |
title_fullStr | Vektoranalysis von Donald E. Bourne, Peter C. Kendall |
title_full_unstemmed | Vektoranalysis von Donald E. Bourne, Peter C. Kendall |
title_short | Vektoranalysis |
title_sort | vektoranalysis |
topic | Engineering Engineering, general Ingenieurwissenschaften Tensoranalysis (DE-588)4204323-2 gnd Vektoranalysis (DE-588)4191992-0 gnd |
topic_facet | Engineering Engineering, general Ingenieurwissenschaften Tensoranalysis Vektoranalysis |
url | https://doi.org/10.1007/978-3-322-94056-8 |
work_keys_str_mv | AT bournedonalde vektoranalysis AT kendallpeterc vektoranalysis |