Einführung in die lineare Algebra:
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | German |
Veröffentlicht: |
Wiesbaden
Vieweg+Teubner Verlag
1990
|
Ausgabe: | Dritte, verbesserte Auflage |
Schlagworte: | |
Online-Zugang: | Volltext |
Beschreibung: | Dieses Buch beruht auf Vorlesungen über lineare Algebra und analytische Geometrie, die ich jeweils in zweisemestrigen Kursen an den Universitäten Freiburg und Dortmund für Mathematiker, Physiker, Informatiker und Statistiker gehalten habe. Der Umfang entspricht ungefähr dem Inhalt des ersten Semesters. Mit dem vorliegenden Text soll aber nicht nur das formale Fundament für den zweiten Teil gelegt werden, vielmehr erscheint es mir vernünftig, eine Einführung in das gesamte Gebiet zu geben und dabei gleich wesentliche Probleme der linearen Algebra anzupacken. Deshalb ist dieses Buch nicht nur für Mathematikstudenten des Diploms und des Lehramtes geeignet, sondern ebenso für Nichtmathematiker, die ihre Ausbildung in linearer Algebra in einem Semester absolvieren müssen und trotzdem einen etwas größeren Einblick erhalten sollen. Auch zum Selbststudium dürfte sich der Band gut benützen lassen. Wie soll man Mathematik lernen? Dafür gibt es kein Patentrezept, aber eines kann man sagen: Mathematik lernt man am besten kennen, indem man sie betreibt; das Betreiben aber ist eng mit dem Interesse verbunden. Ich habe deswegen immer versucht, den Leser zur eigenen, teilnehmenden Beschäftigung mit der Mathematik anzuregen, einerseits durch die Vorführung vieler Beispiele, andererseits durch einen Aufbau der Theorie, der von einfachen, konkreten Fragen ausgeht und möglichst direkt zu zentralen Themen gelangt. Gestartet wird hier mit dem expliziten Lösen linearer Gleichungssysteme, das ohnehin in der Praxis ständig gebraucht wird. Am Ende des Weges steht die jordansche Normalform, also die Feinstruktur der linearen Selbstabbildungen |
Beschreibung: | 1 Online-Ressource (280S.) |
ISBN: | 9783322838834 9783528284886 |
DOI: | 10.1007/978-3-322-83883-4 |
Internformat
MARC
LEADER | 00000nmm a2200000zc 4500 | ||
---|---|---|---|
001 | BV042443857 | ||
003 | DE-604 | ||
005 | 20160215 | ||
007 | cr|uuu---uuuuu | ||
008 | 150324s1990 |||| o||u| ||||||ger d | ||
020 | |a 9783322838834 |c Online |9 978-3-322-83883-4 | ||
020 | |a 9783528284886 |c Print |9 978-3-528-28488-6 | ||
024 | 7 | |a 10.1007/978-3-322-83883-4 |2 doi | |
035 | |a (OCoLC)863871186 | ||
035 | |a (DE-599)BVBBV042443857 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a ger | |
049 | |a DE-91 |a DE-634 |a DE-92 |a DE-706 | ||
082 | 0 | |a 510 |2 23 | |
084 | |a NAT 000 |2 stub | ||
100 | 1 | |a Walter, Rolf |d 1937-2022 |e Verfasser |0 (DE-588)13343253X |4 aut | |
245 | 1 | 0 | |a Einführung in die lineare Algebra |c von Rolf Walter |
250 | |a Dritte, verbesserte Auflage | ||
264 | 1 | |a Wiesbaden |b Vieweg+Teubner Verlag |c 1990 | |
300 | |a 1 Online-Ressource (280S.) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
500 | |a Dieses Buch beruht auf Vorlesungen über lineare Algebra und analytische Geometrie, die ich jeweils in zweisemestrigen Kursen an den Universitäten Freiburg und Dortmund für Mathematiker, Physiker, Informatiker und Statistiker gehalten habe. Der Umfang entspricht ungefähr dem Inhalt des ersten Semesters. Mit dem vorliegenden Text soll aber nicht nur das formale Fundament für den zweiten Teil gelegt werden, vielmehr erscheint es mir vernünftig, eine Einführung in das gesamte Gebiet zu geben und dabei gleich wesentliche Probleme der linearen Algebra anzupacken. Deshalb ist dieses Buch nicht nur für Mathematikstudenten des Diploms und des Lehramtes geeignet, sondern ebenso für Nichtmathematiker, die ihre Ausbildung in linearer Algebra in einem Semester absolvieren müssen und trotzdem einen etwas größeren Einblick erhalten sollen. Auch zum Selbststudium dürfte sich der Band gut benützen lassen. Wie soll man Mathematik lernen? Dafür gibt es kein Patentrezept, aber eines kann man sagen: Mathematik lernt man am besten kennen, indem man sie betreibt; das Betreiben aber ist eng mit dem Interesse verbunden. Ich habe deswegen immer versucht, den Leser zur eigenen, teilnehmenden Beschäftigung mit der Mathematik anzuregen, einerseits durch die Vorführung vieler Beispiele, andererseits durch einen Aufbau der Theorie, der von einfachen, konkreten Fragen ausgeht und möglichst direkt zu zentralen Themen gelangt. Gestartet wird hier mit dem expliziten Lösen linearer Gleichungssysteme, das ohnehin in der Praxis ständig gebraucht wird. Am Ende des Weges steht die jordansche Normalform, also die Feinstruktur der linearen Selbstabbildungen | ||
650 | 4 | |a Mathematics | |
650 | 4 | |a Mathematics, general | |
650 | 4 | |a Mathematik | |
650 | 0 | 7 | |a Lineare Algebra |0 (DE-588)4035811-2 |2 gnd |9 rswk-swf |
655 | 7 | |8 1\p |0 (DE-588)4151278-9 |a Einführung |2 gnd-content | |
655 | 7 | |8 2\p |0 (DE-588)4123623-3 |a Lehrbuch |2 gnd-content | |
689 | 0 | 0 | |a Lineare Algebra |0 (DE-588)4035811-2 |D s |
689 | 0 | |8 3\p |5 DE-604 | |
856 | 4 | 0 | |u https://doi.org/10.1007/978-3-322-83883-4 |x Verlag |3 Volltext |
912 | |a ZDB-2-SNA |a ZDB-2-BAD | ||
940 | 1 | |q ZDB-2-SNA_Archive | |
999 | |a oai:aleph.bib-bvb.de:BVB01-027879103 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 2\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 3\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk |
Datensatz im Suchindex
_version_ | 1804153138257592320 |
---|---|
any_adam_object | |
author | Walter, Rolf 1937-2022 |
author_GND | (DE-588)13343253X |
author_facet | Walter, Rolf 1937-2022 |
author_role | aut |
author_sort | Walter, Rolf 1937-2022 |
author_variant | r w rw |
building | Verbundindex |
bvnumber | BV042443857 |
classification_tum | NAT 000 |
collection | ZDB-2-SNA ZDB-2-BAD |
ctrlnum | (OCoLC)863871186 (DE-599)BVBBV042443857 |
dewey-full | 510 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 510 - Mathematics |
dewey-raw | 510 |
dewey-search | 510 |
dewey-sort | 3510 |
dewey-tens | 510 - Mathematics |
discipline | Allgemeine Naturwissenschaft Mathematik |
doi_str_mv | 10.1007/978-3-322-83883-4 |
edition | Dritte, verbesserte Auflage |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03444nmm a2200493zc 4500</leader><controlfield tag="001">BV042443857</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20160215 </controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">150324s1990 |||| o||u| ||||||ger d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783322838834</subfield><subfield code="c">Online</subfield><subfield code="9">978-3-322-83883-4</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783528284886</subfield><subfield code="c">Print</subfield><subfield code="9">978-3-528-28488-6</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/978-3-322-83883-4</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)863871186</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV042443857</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">ger</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-91</subfield><subfield code="a">DE-634</subfield><subfield code="a">DE-92</subfield><subfield code="a">DE-706</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">510</subfield><subfield code="2">23</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">NAT 000</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Walter, Rolf</subfield><subfield code="d">1937-2022</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)13343253X</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Einführung in die lineare Algebra</subfield><subfield code="c">von Rolf Walter</subfield></datafield><datafield tag="250" ind1=" " ind2=" "><subfield code="a">Dritte, verbesserte Auflage</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Wiesbaden</subfield><subfield code="b">Vieweg+Teubner Verlag</subfield><subfield code="c">1990</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (280S.)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Dieses Buch beruht auf Vorlesungen über lineare Algebra und analytische Geometrie, die ich jeweils in zweisemestrigen Kursen an den Universitäten Freiburg und Dortmund für Mathematiker, Physiker, Informatiker und Statistiker gehalten habe. Der Umfang entspricht ungefähr dem Inhalt des ersten Semesters. Mit dem vorliegenden Text soll aber nicht nur das formale Fundament für den zweiten Teil gelegt werden, vielmehr erscheint es mir vernünftig, eine Einführung in das gesamte Gebiet zu geben und dabei gleich wesentliche Probleme der linearen Algebra anzupacken. Deshalb ist dieses Buch nicht nur für Mathematikstudenten des Diploms und des Lehramtes geeignet, sondern ebenso für Nichtmathematiker, die ihre Ausbildung in linearer Algebra in einem Semester absolvieren müssen und trotzdem einen etwas größeren Einblick erhalten sollen. Auch zum Selbststudium dürfte sich der Band gut benützen lassen. Wie soll man Mathematik lernen? Dafür gibt es kein Patentrezept, aber eines kann man sagen: Mathematik lernt man am besten kennen, indem man sie betreibt; das Betreiben aber ist eng mit dem Interesse verbunden. Ich habe deswegen immer versucht, den Leser zur eigenen, teilnehmenden Beschäftigung mit der Mathematik anzuregen, einerseits durch die Vorführung vieler Beispiele, andererseits durch einen Aufbau der Theorie, der von einfachen, konkreten Fragen ausgeht und möglichst direkt zu zentralen Themen gelangt. Gestartet wird hier mit dem expliziten Lösen linearer Gleichungssysteme, das ohnehin in der Praxis ständig gebraucht wird. Am Ende des Weges steht die jordansche Normalform, also die Feinstruktur der linearen Selbstabbildungen</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematics, general</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematik</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Lineare Algebra</subfield><subfield code="0">(DE-588)4035811-2</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="655" ind1=" " ind2="7"><subfield code="8">1\p</subfield><subfield code="0">(DE-588)4151278-9</subfield><subfield code="a">Einführung</subfield><subfield code="2">gnd-content</subfield></datafield><datafield tag="655" ind1=" " ind2="7"><subfield code="8">2\p</subfield><subfield code="0">(DE-588)4123623-3</subfield><subfield code="a">Lehrbuch</subfield><subfield code="2">gnd-content</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Lineare Algebra</subfield><subfield code="0">(DE-588)4035811-2</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">3\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1007/978-3-322-83883-4</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-2-SNA</subfield><subfield code="a">ZDB-2-BAD</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">ZDB-2-SNA_Archive</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-027879103</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">3\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield></record></collection> |
genre | 1\p (DE-588)4151278-9 Einführung gnd-content 2\p (DE-588)4123623-3 Lehrbuch gnd-content |
genre_facet | Einführung Lehrbuch |
id | DE-604.BV042443857 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T01:21:50Z |
institution | BVB |
isbn | 9783322838834 9783528284886 |
language | German |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-027879103 |
oclc_num | 863871186 |
open_access_boolean | |
owner | DE-91 DE-BY-TUM DE-634 DE-92 DE-706 |
owner_facet | DE-91 DE-BY-TUM DE-634 DE-92 DE-706 |
physical | 1 Online-Ressource (280S.) |
psigel | ZDB-2-SNA ZDB-2-BAD ZDB-2-SNA_Archive |
publishDate | 1990 |
publishDateSearch | 1990 |
publishDateSort | 1990 |
publisher | Vieweg+Teubner Verlag |
record_format | marc |
spelling | Walter, Rolf 1937-2022 Verfasser (DE-588)13343253X aut Einführung in die lineare Algebra von Rolf Walter Dritte, verbesserte Auflage Wiesbaden Vieweg+Teubner Verlag 1990 1 Online-Ressource (280S.) txt rdacontent c rdamedia cr rdacarrier Dieses Buch beruht auf Vorlesungen über lineare Algebra und analytische Geometrie, die ich jeweils in zweisemestrigen Kursen an den Universitäten Freiburg und Dortmund für Mathematiker, Physiker, Informatiker und Statistiker gehalten habe. Der Umfang entspricht ungefähr dem Inhalt des ersten Semesters. Mit dem vorliegenden Text soll aber nicht nur das formale Fundament für den zweiten Teil gelegt werden, vielmehr erscheint es mir vernünftig, eine Einführung in das gesamte Gebiet zu geben und dabei gleich wesentliche Probleme der linearen Algebra anzupacken. Deshalb ist dieses Buch nicht nur für Mathematikstudenten des Diploms und des Lehramtes geeignet, sondern ebenso für Nichtmathematiker, die ihre Ausbildung in linearer Algebra in einem Semester absolvieren müssen und trotzdem einen etwas größeren Einblick erhalten sollen. Auch zum Selbststudium dürfte sich der Band gut benützen lassen. Wie soll man Mathematik lernen? Dafür gibt es kein Patentrezept, aber eines kann man sagen: Mathematik lernt man am besten kennen, indem man sie betreibt; das Betreiben aber ist eng mit dem Interesse verbunden. Ich habe deswegen immer versucht, den Leser zur eigenen, teilnehmenden Beschäftigung mit der Mathematik anzuregen, einerseits durch die Vorführung vieler Beispiele, andererseits durch einen Aufbau der Theorie, der von einfachen, konkreten Fragen ausgeht und möglichst direkt zu zentralen Themen gelangt. Gestartet wird hier mit dem expliziten Lösen linearer Gleichungssysteme, das ohnehin in der Praxis ständig gebraucht wird. Am Ende des Weges steht die jordansche Normalform, also die Feinstruktur der linearen Selbstabbildungen Mathematics Mathematics, general Mathematik Lineare Algebra (DE-588)4035811-2 gnd rswk-swf 1\p (DE-588)4151278-9 Einführung gnd-content 2\p (DE-588)4123623-3 Lehrbuch gnd-content Lineare Algebra (DE-588)4035811-2 s 3\p DE-604 https://doi.org/10.1007/978-3-322-83883-4 Verlag Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 2\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 3\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Walter, Rolf 1937-2022 Einführung in die lineare Algebra Mathematics Mathematics, general Mathematik Lineare Algebra (DE-588)4035811-2 gnd |
subject_GND | (DE-588)4035811-2 (DE-588)4151278-9 (DE-588)4123623-3 |
title | Einführung in die lineare Algebra |
title_auth | Einführung in die lineare Algebra |
title_exact_search | Einführung in die lineare Algebra |
title_full | Einführung in die lineare Algebra von Rolf Walter |
title_fullStr | Einführung in die lineare Algebra von Rolf Walter |
title_full_unstemmed | Einführung in die lineare Algebra von Rolf Walter |
title_short | Einführung in die lineare Algebra |
title_sort | einfuhrung in die lineare algebra |
topic | Mathematics Mathematics, general Mathematik Lineare Algebra (DE-588)4035811-2 gnd |
topic_facet | Mathematics Mathematics, general Mathematik Lineare Algebra Einführung Lehrbuch |
url | https://doi.org/10.1007/978-3-322-83883-4 |
work_keys_str_mv | AT walterrolf einfuhrungindielinearealgebra |