Die euklidische Ebene und ihre Verwandten:
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | German |
Veröffentlicht: |
Basel
Birkhäuser Basel
1999
|
Schlagworte: | |
Online-Zugang: | Volltext |
Beschreibung: | Your aid I want Nine trees to plant In rows just half a score, And let there be In each row three. Solve this. I ask no more. ( J. J ackson, Rational Amusements for Winter Evenings. London 1821) Beim Beweise vieler Sätze der Elementargeometrie nutzt man nur sehr unvollkom men aus, daß es der Körper der reellen Zahlen ist, welcher der Geometrie zugrunde liegt. Mal sind es nur die Körpereigenschaften, die man benötigt, mal daß die mul tiplikative Gruppe abelsch ist. Manchmal braucht man auch nur, daß die Charak teristik nicht zwei ist, ein andermal, daß R eine Anordnung besitzt. Gelegentlich genügt es sogar zu wissen, daß die euklidische Ebene eine affine Ebene ist. Diese wenigen Andeutungen machen schon ein wenig deutlich, worum es bei un serem Thema gehen wird: Wir werden uns einerseits erheblich einschränken, indem wir hier unter Elementargeometrie nur die ebene euklidische Geometrie verstehen, also auf alles Räumliche verzichten, andererseits eine wesentliche Erweiterung des Themas Elementargeometrie vornehmen, indem wir zumindest zu Beginn unserer Untersuchungen auch beliebige projektive Ebenen in sie einbeziehen, da wir uns dieses Hilfsmittels nicht werden begeben wollen. Wir werden jedoch nicht eine The orie der projektiven Ebenen entwickeln, wie sie etwa in den im Literaturverzeichnis aufgeführten Büchern von P. Dembowski, Hughes und Piper, Pickert oder auch von mir dargestellt wird |
Beschreibung: | 1 Online-Ressource (216S.) |
ISBN: | 9783034888738 9783764356859 |
DOI: | 10.1007/978-3-0348-8873-8 |
Internformat
MARC
LEADER | 00000nmm a2200000zc 4500 | ||
---|---|---|---|
001 | BV042443629 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 150324s1999 |||| o||u| ||||||ger d | ||
020 | |a 9783034888738 |c Online |9 978-3-0348-8873-8 | ||
020 | |a 9783764356859 |c Print |9 978-3-7643-5685-9 | ||
024 | 7 | |a 10.1007/978-3-0348-8873-8 |2 doi | |
035 | |a (OCoLC)907249229 | ||
035 | |a (DE-599)BVBBV042443629 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a ger | |
049 | |a DE-91 |a DE-634 |a DE-92 |a DE-706 | ||
082 | 0 | |a 516 |2 23 | |
084 | |a NAT 000 |2 stub | ||
100 | 1 | |a Lüneburg, Heinz |e Verfasser |4 aut | |
245 | 1 | 0 | |a Die euklidische Ebene und ihre Verwandten |c von Heinz Lüneburg |
264 | 1 | |a Basel |b Birkhäuser Basel |c 1999 | |
300 | |a 1 Online-Ressource (216S.) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
500 | |a Your aid I want Nine trees to plant In rows just half a score, And let there be In each row three. Solve this. I ask no more. ( J. J ackson, Rational Amusements for Winter Evenings. London 1821) Beim Beweise vieler Sätze der Elementargeometrie nutzt man nur sehr unvollkom men aus, daß es der Körper der reellen Zahlen ist, welcher der Geometrie zugrunde liegt. Mal sind es nur die Körpereigenschaften, die man benötigt, mal daß die mul tiplikative Gruppe abelsch ist. Manchmal braucht man auch nur, daß die Charak teristik nicht zwei ist, ein andermal, daß R eine Anordnung besitzt. Gelegentlich genügt es sogar zu wissen, daß die euklidische Ebene eine affine Ebene ist. Diese wenigen Andeutungen machen schon ein wenig deutlich, worum es bei un serem Thema gehen wird: Wir werden uns einerseits erheblich einschränken, indem wir hier unter Elementargeometrie nur die ebene euklidische Geometrie verstehen, also auf alles Räumliche verzichten, andererseits eine wesentliche Erweiterung des Themas Elementargeometrie vornehmen, indem wir zumindest zu Beginn unserer Untersuchungen auch beliebige projektive Ebenen in sie einbeziehen, da wir uns dieses Hilfsmittels nicht werden begeben wollen. Wir werden jedoch nicht eine The orie der projektiven Ebenen entwickeln, wie sie etwa in den im Literaturverzeichnis aufgeführten Büchern von P. Dembowski, Hughes und Piper, Pickert oder auch von mir dargestellt wird | ||
650 | 4 | |a Mathematics | |
650 | 4 | |a Geometry | |
650 | 4 | |a Mathematik | |
650 | 0 | 7 | |a Euklidische Geometrie |0 (DE-588)4137555-5 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Euklidische Ebene |0 (DE-588)4153143-7 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Euklidische Geometrie |0 (DE-588)4137555-5 |D s |
689 | 0 | 1 | |a Euklidische Ebene |0 (DE-588)4153143-7 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
856 | 4 | 0 | |u https://doi.org/10.1007/978-3-0348-8873-8 |x Verlag |3 Volltext |
912 | |a ZDB-2-SNA |a ZDB-2-BAD | ||
940 | 1 | |q ZDB-2-SNA_Archive | |
999 | |a oai:aleph.bib-bvb.de:BVB01-027878876 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk |
Datensatz im Suchindex
_version_ | 1804153137790976000 |
---|---|
any_adam_object | |
author | Lüneburg, Heinz |
author_facet | Lüneburg, Heinz |
author_role | aut |
author_sort | Lüneburg, Heinz |
author_variant | h l hl |
building | Verbundindex |
bvnumber | BV042443629 |
classification_tum | NAT 000 |
collection | ZDB-2-SNA ZDB-2-BAD |
ctrlnum | (OCoLC)907249229 (DE-599)BVBBV042443629 |
dewey-full | 516 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 516 - Geometry |
dewey-raw | 516 |
dewey-search | 516 |
dewey-sort | 3516 |
dewey-tens | 510 - Mathematics |
discipline | Allgemeine Naturwissenschaft Mathematik |
doi_str_mv | 10.1007/978-3-0348-8873-8 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02978nmm a2200457zc 4500</leader><controlfield tag="001">BV042443629</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">150324s1999 |||| o||u| ||||||ger d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783034888738</subfield><subfield code="c">Online</subfield><subfield code="9">978-3-0348-8873-8</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783764356859</subfield><subfield code="c">Print</subfield><subfield code="9">978-3-7643-5685-9</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/978-3-0348-8873-8</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)907249229</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV042443629</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">ger</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-91</subfield><subfield code="a">DE-634</subfield><subfield code="a">DE-92</subfield><subfield code="a">DE-706</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">516</subfield><subfield code="2">23</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">NAT 000</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Lüneburg, Heinz</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Die euklidische Ebene und ihre Verwandten</subfield><subfield code="c">von Heinz Lüneburg</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Basel</subfield><subfield code="b">Birkhäuser Basel</subfield><subfield code="c">1999</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (216S.)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Your aid I want Nine trees to plant In rows just half a score, And let there be In each row three. Solve this. I ask no more. ( J. J ackson, Rational Amusements for Winter Evenings. London 1821) Beim Beweise vieler Sätze der Elementargeometrie nutzt man nur sehr unvollkom men aus, daß es der Körper der reellen Zahlen ist, welcher der Geometrie zugrunde liegt. Mal sind es nur die Körpereigenschaften, die man benötigt, mal daß die mul tiplikative Gruppe abelsch ist. Manchmal braucht man auch nur, daß die Charak teristik nicht zwei ist, ein andermal, daß R eine Anordnung besitzt. Gelegentlich genügt es sogar zu wissen, daß die euklidische Ebene eine affine Ebene ist. Diese wenigen Andeutungen machen schon ein wenig deutlich, worum es bei un serem Thema gehen wird: Wir werden uns einerseits erheblich einschränken, indem wir hier unter Elementargeometrie nur die ebene euklidische Geometrie verstehen, also auf alles Räumliche verzichten, andererseits eine wesentliche Erweiterung des Themas Elementargeometrie vornehmen, indem wir zumindest zu Beginn unserer Untersuchungen auch beliebige projektive Ebenen in sie einbeziehen, da wir uns dieses Hilfsmittels nicht werden begeben wollen. Wir werden jedoch nicht eine The orie der projektiven Ebenen entwickeln, wie sie etwa in den im Literaturverzeichnis aufgeführten Büchern von P. Dembowski, Hughes und Piper, Pickert oder auch von mir dargestellt wird</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Geometry</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematik</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Euklidische Geometrie</subfield><subfield code="0">(DE-588)4137555-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Euklidische Ebene</subfield><subfield code="0">(DE-588)4153143-7</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Euklidische Geometrie</subfield><subfield code="0">(DE-588)4137555-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Euklidische Ebene</subfield><subfield code="0">(DE-588)4153143-7</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1007/978-3-0348-8873-8</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-2-SNA</subfield><subfield code="a">ZDB-2-BAD</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">ZDB-2-SNA_Archive</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-027878876</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield></record></collection> |
id | DE-604.BV042443629 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T01:21:50Z |
institution | BVB |
isbn | 9783034888738 9783764356859 |
language | German |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-027878876 |
oclc_num | 907249229 |
open_access_boolean | |
owner | DE-91 DE-BY-TUM DE-634 DE-92 DE-706 |
owner_facet | DE-91 DE-BY-TUM DE-634 DE-92 DE-706 |
physical | 1 Online-Ressource (216S.) |
psigel | ZDB-2-SNA ZDB-2-BAD ZDB-2-SNA_Archive |
publishDate | 1999 |
publishDateSearch | 1999 |
publishDateSort | 1999 |
publisher | Birkhäuser Basel |
record_format | marc |
spelling | Lüneburg, Heinz Verfasser aut Die euklidische Ebene und ihre Verwandten von Heinz Lüneburg Basel Birkhäuser Basel 1999 1 Online-Ressource (216S.) txt rdacontent c rdamedia cr rdacarrier Your aid I want Nine trees to plant In rows just half a score, And let there be In each row three. Solve this. I ask no more. ( J. J ackson, Rational Amusements for Winter Evenings. London 1821) Beim Beweise vieler Sätze der Elementargeometrie nutzt man nur sehr unvollkom men aus, daß es der Körper der reellen Zahlen ist, welcher der Geometrie zugrunde liegt. Mal sind es nur die Körpereigenschaften, die man benötigt, mal daß die mul tiplikative Gruppe abelsch ist. Manchmal braucht man auch nur, daß die Charak teristik nicht zwei ist, ein andermal, daß R eine Anordnung besitzt. Gelegentlich genügt es sogar zu wissen, daß die euklidische Ebene eine affine Ebene ist. Diese wenigen Andeutungen machen schon ein wenig deutlich, worum es bei un serem Thema gehen wird: Wir werden uns einerseits erheblich einschränken, indem wir hier unter Elementargeometrie nur die ebene euklidische Geometrie verstehen, also auf alles Räumliche verzichten, andererseits eine wesentliche Erweiterung des Themas Elementargeometrie vornehmen, indem wir zumindest zu Beginn unserer Untersuchungen auch beliebige projektive Ebenen in sie einbeziehen, da wir uns dieses Hilfsmittels nicht werden begeben wollen. Wir werden jedoch nicht eine The orie der projektiven Ebenen entwickeln, wie sie etwa in den im Literaturverzeichnis aufgeführten Büchern von P. Dembowski, Hughes und Piper, Pickert oder auch von mir dargestellt wird Mathematics Geometry Mathematik Euklidische Geometrie (DE-588)4137555-5 gnd rswk-swf Euklidische Ebene (DE-588)4153143-7 gnd rswk-swf Euklidische Geometrie (DE-588)4137555-5 s Euklidische Ebene (DE-588)4153143-7 s 1\p DE-604 https://doi.org/10.1007/978-3-0348-8873-8 Verlag Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Lüneburg, Heinz Die euklidische Ebene und ihre Verwandten Mathematics Geometry Mathematik Euklidische Geometrie (DE-588)4137555-5 gnd Euklidische Ebene (DE-588)4153143-7 gnd |
subject_GND | (DE-588)4137555-5 (DE-588)4153143-7 |
title | Die euklidische Ebene und ihre Verwandten |
title_auth | Die euklidische Ebene und ihre Verwandten |
title_exact_search | Die euklidische Ebene und ihre Verwandten |
title_full | Die euklidische Ebene und ihre Verwandten von Heinz Lüneburg |
title_fullStr | Die euklidische Ebene und ihre Verwandten von Heinz Lüneburg |
title_full_unstemmed | Die euklidische Ebene und ihre Verwandten von Heinz Lüneburg |
title_short | Die euklidische Ebene und ihre Verwandten |
title_sort | die euklidische ebene und ihre verwandten |
topic | Mathematics Geometry Mathematik Euklidische Geometrie (DE-588)4137555-5 gnd Euklidische Ebene (DE-588)4153143-7 gnd |
topic_facet | Mathematics Geometry Mathematik Euklidische Geometrie Euklidische Ebene |
url | https://doi.org/10.1007/978-3-0348-8873-8 |
work_keys_str_mv | AT luneburgheinz dieeuklidischeebeneundihreverwandten |